
PolyD: A Flexible Dispatching Framework

Antonio Cunei
cunei@cs.purdue.edu

Jan Vitek
jv@cs.purdue.edu

Department of Computer Science
Purdue University

250 N. University Street
West Lafayette, IN 47907-2066

ABSTRACT
The standard dispatching mechanisms built into programming lan-
guages are sometimes inadequate to the needs of the programmer.
In the case of Java, the need for more flexibility has led to the devel-
opment of a number of tools, including visitors and multi-method
extensions, that each add some particular functionality, but lack
the generality necessary to support user-defined dispatching mech-
anisms. In this paper we advocate a more modular approach to dis-
patching, and we present a tool, PolyD, that allows the programmer
to design custom dispatching strategies and to parametrize many
aspects of the dispatching process. PolyD exhibits excellent per-
formance and compares well against existing tools.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques—
Object-oriented programming; D.3.3 [Software Engineering]: Lan-
guage Constructs and Features—Patterns

General Terms
Languages

Keywords
Dispatching, Multimethods, Visitor Pattern, Java

1. INTRODUCTION
Object-oriented programming revolves around organizing data

and code as distinct objects that communicate using messages. When
a message is received by one object, the object responds in its own
way, by using one of the available methods. The message is “dis-
patched”, meaning that one of the methods is selected and invoked
as a result of the arrival of the message. The details of the dispatch-
ing process, however, and in particular of the method selection, can
vary considerably.

If, for instance, compile-time information is used exclusively in
order to select the correct method, the only run-time action required

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

will be the method invocation, a situation referred to as static res-
olution. Much more frequently, however, dynamic dispatching is
used instead, meaning that the actual run-time class of one or more
objects is used in the selection process. Most typed languages, in-
cluding Java, rely on a combination of static resolution andsingle
dispatching, in which the run-time selection of the method is based
on the class of a single, distinguished, argument. The remaining
arguments of the message are only inspected statically in order to
resolve overloaded methods. Other languages implement amul-
tiple dispatchingmechanism, in which the run-time class of mul-
tiple objects is considered in order to select the most appropriate
method [4, 19, 12]. Multiple dispatching, together with its general-
ization to predicate dispatching, has been studied in the context of
extensions to Java [25, 8, 13, 16, 35] and from the point of view of
static type-checking [14, 1, 7]. Multiple dispatching is an elegant
tool that can help to solve programming problems that would other-
wise require more complex workarounds. For instance, the classic
Visitor pattern is a convoluted substitute for a straightforward dou-
ble dispatching [29].

The goal of PolyD is to provide amodular framework for user-
defined dispatching mechanisms for Java. We argue that when pro-
grammers are faced with the need for a dispatching mechanism dis-
tinct from what is provided by the language, a tool like PolyD pro-
vides them with a more efficient, flexible, and easy to use solution
than hand-coded mechanisms. By emphasizing the separation and
the modularity between the message send and the actual dispatch-
ing mechanism, PolyD allows the programmer to select different
dispatching mechanisms in different parts of the code, to modify
their choice of dispatcher during development or even at run time,
and to customize various aspect of the standard dispatchers pro-
vided. In order to be practical, the design of PolyD is constrained
by the following requirements. The framework should benon-
intrusive. This means that changes to the syntax of Java or the
tool-chain (ie source compiler, debugger, bytecode format) are not
acceptable. The solution should beportable in the sense that it
should run on any implementation of Java and thus virtual machine
changes are ruled out. Dispatchers should bemodular allowing
users to redefine either the implementation of the client methods,
target methods, or of the dispatcher, independently without requir-
ing recompilation. The framework should be sufficientlyflexible
to allow user to modify the semantics of the standard dispatchers
bundled with the tool. This paper presents the following main con-
tributions:

• The idea of a modular approach to dispatching, enabling a
greater flexibility in the choice of the dispatching mecha-
nisms.

• The design and implementation of the PolyD dispatching

framework, which allows new dispatchers to be defined and
used in the standard Java execution environment with mini-
mal effort.

• A multi-method dispatcher for Java that has good perfor-
mance and scales better than other tools when increasing the
number of methods involved. An original handling ofnull
values is also described.

• A tool that can be used as a teaching aid to show how differ-
ent dispatching mechanisms cause the same code to behave
differently.

• Examples of applications for which PolyD is useful.

• A performance evaluation of PolyD, comparing it against
other tools.

2. MOTIVATING EXAMPLE
To see a practical example of the impact of the dispatching strat-

egy on the code organization, consider the following, concrete ex-
ample. The Ovm project, developed at Purdue University, is an
open source framework for building language runtimes that includes
an ahead-of-time compiler and tools for manipulating bytecode [41].
Ovm transforms incoming bytecode to an intermediate representa-
tion called OvmIR that is the common input of all execution modes
(interpret/compile). We will first give some background on the is-
sues involved in writing bytecode (or OvmIR) manipulation tools,
then we discuss issues specific to dispatching.

2.1 A bytecode manipulation framework
In Ovm each intermediate representation instruction corresponds

to a subclass of theInstruction class. Analyses written for the
framework use the flyweight pattern [28] to avoid the need for mul-
tiple instances of the same instruction class. AnInstruction-
Buffer class maintains the current program counter and interprets
constants referenced from the bytecode stream. This technique al-
lows instruction objects to retrieve and interpret their immediate
operands without any state of their own. For example, the con-
crete instructionG E T F I E L D subclasses the abstract classField-
Access. FieldAccess provides a methodgetSelector() to re-
turn information about the name and type of the field being ac-
cessed. The state required by the method is encapsulated in the
instruction buffer argument. This design follows the flyweight pat-
tern, allowing theInstructionSet class to hold a single instance
of each concrete instruction.

The semantic specification of every instruction is provided in
the constructor without parameters of the respective class. Each
instruction implements the methodssize() (to return its size in
bytes), andgetOpcode(). Further behavior is added by appropri-
ate subclasses. Thus, manipulations of the OvmIR can rely on the
type checker to prevent some errors, for instance trying to use a
constant pool index as a jump target. The core of the instruction
hierarchy used within Ovm is shown in Fig. 1. Such hierarchy re-
flects properties of the Java bytecode instruction set and is based
on pragmatic considerations, not on any systematic analysis of fea-
tures of all conceivable instructions of stack machines.

It turns out to be impossible to model all the features of bytecode
using single inheritance. For example,FlowChange is an interface
which is implemented by the concrete instructionRET (return) that
inherits fromLocalAccess. Another example is theThrowing in-
terface which is implemented by all instructions that can throw ex-
ceptions.

|}~��}� ��~��
��� �� �}� ��~���}}�|}~�
�}� ��~���}}���~� ���}����}� �����������
�}������}� ���}�~��}�

�}�����}�~����� ��
� ��� ����� � }�}�

�� ���� ���}� ¡� �}�����}�~����� ����
��}¢£�� ¤¢ ���¥
|}�~������� �£¦

|}�~�§����
¤¥ ����� |}�~���~�
¤�~�¨©~� ����~��}�
¤ª� �¥�}� �«~��}�
���~ª������ ���~ª��~�
| ��¨¤�������� ���~ª¤�}��
�����������¬� ��¨

�®�� ¯�� ���}�~��}� ¬� ��¨

° ±² ³ ´³ µ¶· ¸¹º»¼½¾»¸¿¹ ¶¸·¼À¼¾¶ÁÂ µ¶· ÃÄÅ ÆÇ ¾¿¹º¸º»º ¿È ÉÊË ¾¿¹¾¼·»· ¸¹º»¼½¾»¸¿¹º
Ì�£¦ ¸º »¶· ¿¹ÍÁ ¿¹· º¶¿Î¹ ¶·¼·Ï Â

ÐÑÒÓÔÑÕ Ö×ÒÕ×ØÙÕ ÚÛ ÔÑÕ Ö×ÒÕ×ÜÑÑÝÐÑÒÓÔÑÕ Ö×ÒÕ×ÜÑÑÝÞßÒÓ ÞßÖÑÝà×ÙÑÕ á ÙßÝÓâããßÖÖÔÑÕäßå ÖÙÑÕ æÕäÑãÒ×ÙÑÕÔÑÕÓÙ×ÙÑÕÒÝçàèÛ æéê ëìí îïðñò ó ôÑ×ÑÖæÕ Ö×åà ã×ÙÑÕ õÕ ãÑÕÓÙ×ÙÑÕÒÝçàèÛ çÖåÖáÝÑö÷ÕÓ øöÙ×ãùÐÑãÒÝâããßÖÖ Þ÷úÐÑãÒÝûåÙ×ßøù Ùé×ÚÛ ÐÑãÒÝÞßÒÓø×ÒãüýÒÕ ÙÛàÝÒ×ÙÑÕøþÕ ãùåÑÕ ÙÿÒ×ÙÑÕâååÒþâããßÖÖ âååÒþÞßÒÓ
ÐÙÕüøß×âããßÖÖ âååÒþø×ÑåßáÙßÝÓâããßÖÖ�à Ùãü

�ï�ìí �ñò æÕäÑãÒ×ÙÑÕ �à Ùãü

89� � E�FC=>� ED� ?	AJ ED�=JG>=E?D�

�� ������� ���� �������� �� ��� �� ������� ���� ��� � � ���������� ��� ���������� �!" ��� ��� ���#
������ � ����� �� $ ������ � ���$����� !������� �
 �� �� �� ��������� � ����� ��� ��� �����������
���� ����� ���������� ������ �� $������� ��$ ��%����� ������ �� ���� ���������� ��� �

�� ���� �� ��� ���������� �� �&������ � ��� �� ÒããßÛ× '(� ����� ��� ������ ������ ����
� ������ � � ����� �$ ������� �� ��� ���������� �)� ����� �� � �*� ���� ��������� ����� ��� ������#
���� ���� �������� �� ��� ��������� �� + �� � , �� ������ ��� ��� � ������ �� ! ������ ��� ���������� �

�� � ����� ���� �� $��� ��� ��� ������ ������ ��� �!�� �� ��*� ��������� �� ��� ���������� ����#
����� - ��� � ��� � ����� ��� ! � ���������� ���� ��� ������������ � ����� $������ ./0 � +�� �&�� $�� ���
���� � ���1�� ��������� ���� ��� ��� ���� �� � �������� ! ������ 2��� 3 ���� 1��� ���� �$ �������
4 £¦��£|5 6 �¡¦��£|5 6 £¦¤¦�¦�� 6 �¡¦¤¦�¦�� 7 � 8 ��� ��� � ����������� � ����� $������ �� ����
���� �� �� $��� ��� � � ��� � ����� ��� ��� �!����� áÙßÝÓâããßÖÖ ���������� ��� �)� ����� �� � �*� ���
�������� ���� � ����� $������ ���* � ���$ �� � ����� ���� ��� ����� ���� ���� äÙÖÙ× 'Üõúøúâú æÔ Ù(��
äÙÖÙ× 'áÙßÝÓâããßÖÖ Ù(� ��%����� � +�� �� ���������� óò £¦��£|5 ��� $����� ��� �� ��� ������������
� ����� ����� ���� ��� ������ ��� � ����� 9

:; ±< ����� = £¦��£|5 �> ?

Figure 1: The instruction hierarchy. OvmIR consists of 237
concrete instructions (RET is the only one shown here). Italics
indicate interfaces, all others are abstract classes.

2.2 Dispatching over instructions
The software architecture of Ovm has evolved over time. Orig-

inally, the instruction objects used dedicated methods to perform
bytecode manipulation. The use of dedicated methods had the dis-
advantage that every additional analysis or processing step required
changes to each instruction class. Thus, each of the instructions
was extended with anaccept() method and various analyses were
written as visitors operating on the instructions.

In order to make code factoring easier, the instructions were ar-
ranged in the hierarchy of Fig. 1 to factor out commonalities be-
tween the instructions. The visitors that implement the various
analyses are able to take advantage of the instruction hierarchy;
the visit methods can be refactored using the hierarchical visitor
pattern [39]. For example, our access modifier inference tool does
not need to distinguish between Java’s four field access operations
(GETFIELD, PUTFIELD, GETSTATIC, PUTSTATIC). Using the hierar-
chical visitor pattern, we only need to implement a visit method
for the abstractFieldAccess instruction class. In order to make
the hierarchical visitor pattern work, a helper method that redirects
calls from visit(PUTSTATIC i) to visit(FieldAccess i) is
required. For an instruction, likeGETFIELD, the parent class of
all hierarchical visitors would have the following method:

void visit(GETFIELD i) {
visit((FieldAccess) i);

}

The sole purpose of this method is to redispatch calls that are not
implemented by the specific visitor to the parent type. This is a
useful technique, as it allows us to factor out implementations ap-
plicable to a group of instructions. Writing this indirection code,
while conceptually trivial, turns out to be cumbersome. Each time
the instruction hierarchy evolves, the base-classes of the visitors
need to be rewritten. With over 200 instruction classes it is difficult
to track changes in the hierarchy. The use of the visitor pattern re-
quires that every analysis supplies visit methods forall instructions.
Thus, every change in the hierarchy of the instruction set requires
updates to several visitors.

The problem was solved by replacing the use of visitors with the
Walkabout pattern [42]. The Walkabout declares visit methods just
like visitors, but instead of doing double-dispatch withaccept()
methods in the instruction objects, the appropriate visit methods are
found by reflection. In Ovm, hundreds ofaccept() methods were
removed from the instruction objects and hundreds ofvisit()
methods that were either abstract (visitor interface), empty (default

base class) or indirecting to other visit methods (hierarchical visi-
tor) became obsolete. The plain Walkabout was subsequently re-
placed with the Runabout [29], an alternate implementation of the
same pattern that relies on dynamic bytecode generation in order to
achieve higher performance.

2.3 The meaning of “most appropriate”
While the Runabout considerably simplified the structure of Ovm,

a number of more subtle issues arose, originated by the algorithm
chosen to select a suitable visit method in the various circumstances.
Consider the following example, taken from the Ovm code that
adds write barriers:

void visit(PUTFIELD i) { ...
if (...)
...replaceInstruction().

addPUTFIELD_WITH_BARRIER_REF();
}
void visit(PUTFIELD_WITH_BARRIER_REF i) { }
void visit(PUTSTATIC_WITH_BARRIER_REF i) { }
void visit(AASTORE_WITH_BARRIER i) { }

The code replaces, when appropriate, some occurrences of thePUTFIELD

bytecode. However, some empty visit methods are necessary in or-
der to restrict the manipulation to instances ofPUTFIELD, while ex-
cluding instance of its subclassPUTFIELD_WITH_BARRIER_REF. The
same applies to other instructions. While the hierarchy used makes
sense in many other parts of the code, in this particular case we
would rather have the opportunity to use a “non subsumptive” vis-
itor, in order to make the code clearer and more maintainable, even
if the hierarchy changes and new subclasses are added. The “most
appropriate” method for the developer, in this case, would not be
the one selected by the Runabout.

Other problems related to the method selection arise because
of the complex hierarchy, which includes subclasses and subinter-
faces, used to organize the set of instructions. The Runabout ar-
bitrarily gives preference tovisit methods encountered following
the chain of superclasses overvisit methods found through super-
interfaces. Such a resolution algorithm caused several headaches
during the development of Ovm, since it is difficult to track exactly
which visit method will be called in all circumstances.

Even more tricky is the question of visitor-style dispatching when
inheritance is used to organize visitors themselves. Consider the
following example, taken from an Ovm bug report:

class C { }
class D extends C { }
class BR extends VisitorTool {
void visit(D _) { }

}
class DR extends BR {
void visit(C _) { }

}

What is the semantics that should be applied if a messagevisit(new
D()) is sent to an instance ofDR? The role of the visitor tool is
to discover the dynamic type of the parameter, and to invoke the
“most appropriate” method, but there are actually various choices,
of which the tool selects just one. For instance, the developer
might design the various subclasses as successive refinements that
together describe the visitor. In that casevisit(D) in BR should be
applied, being the most specific according to the argument type. On
the other hand, the developer might regard every new subclass as
an entirely new layer of implementation; in that case thevisit(C)

in DR should be preferred, as it is able to deal with anew D() and
is more appropriate in the sense that it is defined in a more specific
subclass. Some developers might be interested in distinguishing
between the two cases according to the static type of the argument,
or other factors.

In other words, developers require a degree of flexibility in the
selection of the “most appropriate” method that is not granted by
current tools. The lack of flexibility in the choice of the dispatch-
ing policy impacts adversely on the usability of the tool, on the
ability of developers to give the desired structure to their code, and
ultimately on code maintainability.

3. TOWARDS A MODULAR APPROACH
TO DISPATCHING

The lack of flexibility in the existing tools is what prompted our
research for a more versatile solution, and the subsequent develop-
ment of PolyD. Rather than developing multiple tools, each suitable
for individual situations, we explore how different approaches can
be integrated within a single framework, and how the dispatching
mechanism can be modularized in order to achieve the necessary
degree of flexibility. We argue that such an approach is not limited
to our current implementation, but it is in fact a general technique,
applicable to object-oriented languages, that offers more powerful
dispatching features to programmers.

3.1 Modular dispatching mechanisms: a
general approach

Having multiple, but independent, dispatching mechanisms has
the potential to be inefficient in many ways. First of all, if differ-
ent calling formats or conventions are used it becomes difficult to
replace one dispatching strategy with another at a later stage. Sec-
ond, every dispatcher is implemented from scratch, despite the fact
that parts of their inner workings are likely to be similar. Finally,
the programmer has no direct way to customize relevant aspects of
the dispatching process.

In order to make the dispatching procedure more general, we will
instead use a modular approach, so that individual components can
be replaced and customized. By abstracting and separating com-
mon elements, it becomes easier to add custom dispatching mecha-
nisms, to alter their operation, to replace them in a modular fashion,
and to obtain new functionalities operating directly at the dispatch-
ing level. We will use the term “dispatcher” to refer to any compo-
nent that implements a specific dispatching mechanism, be it a part
of the built-in language runtime or an additional API. In order to
describe our modular approach to dispatching, we will progress in
stages by decomposing dispatchers into their basic components.

3.1.1 Selection and invocation
Let us consider the structure of a generic dispatcher. The funda-

mental steps that every dispatcher, regardless of its exact operation,
needs to perform at runtime are the selection of one of the available
methods, according to the supplied arguments, and the invocation
of the method selected. Figure 2 reflects this first subdivision in the
internal structure, and the flow of data at runtime during a message
dispatching.

In the most general case the dynamic selection of a method can
potentially use not just the class to which the arguments belong,
but their values as well. For instance, one of the message argu-
ments could contain an index used to select from a set of available
methods. Considering the abstract structure of dispatchers, we can
make no assumptions about the specific method selection strategy
in use. Conceivably, the choice of the method could depend on ex-

Arguments

Message name

Message

Method
Selection

Dispatcher

Method
ID Method

Invocation

Message
Name

Arguments Arguments

Figure 2: Basic structure of a dispatcher

Arguments

Message name

Message

Dispatcher

Method
ID Method

Invocation

Message
Name

Arguments Arguments

Selection
Interface

Dispatching
Policy

Figure 3: Separating the policy from caching and invocation

ternal factors or on the execution history. Different methods could
be selected for successive identical messages with identical argu-
ments. The selection could even be completely random.

3.1.2 Modularizing the selection module
While, in general, it is not possible to anticipate the way in which

the selection module will choose one of the available methods, the
dynamic dispatching strategies that are normally used in program-
ming languages rely solely on the classes1 of the arguments, and
always select the same method given the set of applicable methods
and the list of argument classes. Such a deterministic behavior,
together with the computational cost of finding the most appro-
priate methods, leads naturally to a further modularization in the
dispatcher structure, reflecting the introduction of a caching mech-
anism and a further confinement of the method selection policy.

The method selection module can be divided into two separate
parts. The “dispatching policy” component will contain the core
logic of the method choice, while the selection interface will deal
with the implementation aspects, including caching. The general
structure of a dispatcher assumes therefore the form shown in Fig-
ure 3, while the internal structure of the caching method selection
module is shown in Figure 4.

An aspect worth emphasizing is that, by concentrating on the ef-
ficient implementation of the cache and the method invocation, all
the dispatcher implemented according to this structure will share a
high dispatching efficiency after the initial warm-up stage. Sub-
tle implementation details such as cache synchronization issues,
present in multithreaded code, are also removed from the core dis-
patching logic and can be dealt with just once for the whole system.

1We use the term “class” although “type” would be more appropri-
ate, even more so since some arguments could be primitive values
rather than objects. This use of “class” reflects the terminology
used in the reflective API of Java, in which even primitives have a
Class descriptor.

Dispatching
Policy

List of Classes

Message
Name

List of
Classes

Method
ID

Method Cache

Extract List
Of Classes

Message
name

Arguments

Meth
ID

Figure 4: Caching the method selection

The mechanism enables developers to add new dispatching policies
without putting an excessive emphasis on the optimization of their
code, while focusing instead on other aspects such as correctness
and code maintainability. The range of dispatchers made available
by PolyD all share a high dispatching efficiency thanks to the use
of the modular approach described here.

3.2 Building dispatchers
Having introduced a first modular structure for dispatchers, we

can consider how different modules can co-exist, and the effects on
the code that uses the resulting dispatchers.

The separation between method selection and method invocation
suggests a first approach to the modular composition of dispatch-
ers. In the simplest case, the invocation consists in little more than
jumping to the method code, but it might also involve code loading
or other operations. One implementation of the invocation module
can be shared among multiple dispatchers. If that invocation mod-
ule is modified or optimized, all of the dispatchers will benefit from
the new implementation.

As a first step, we can replace distinct dispatchers, shown in Fig-
ure 5, with the structure shown in Figure 6.

Single Dispatching

Standard Visitor

Non-subsumptive Visitor

messagei(args)

visiti(item)

specialVisiti(item)

Language Runtime

Figure 5: Separate dispatching subsystems

Selection
1

Selection
2

Selection
n

message
i,d
(args)

Language Runtime

Invocation

d=1

d=2

d=n

message
i,d
(args)

message
i,d
(args)

Figure 6: A more homogeneous structure

A single call format.In order to make the use of different
dispatchers more symmetrical, different call formats are replaced
by a single format, in which the chosen dispatching mechanism is
involved in the message sending operation, potentially as a run-
time argument. By using a single and consistent mechanism for us-
ing the different dispatchers in the client code, it becomes possible
to replace dispatchers during development, or even dynamically at
runtime. That can be of interest considering that, in the same way in
which classes can be loaded dynamically, new dispatching policies
suitable for specific class hierarchies can be loaded dynamically as
well. The new dispatchers can then be used without any need for
client code recompilation.

In a sense, moving from a fixed dispatcher for each call to a para-
metric call site, in which the dispatcher is a dynamic factor, is sim-
ilar to the gain in flexibility obtained by moving from strict over-
loading to true dynamic dispatching: we gain the ability to decide
dynamically not just that we want the “most appropriate” method
for those arguments, but also what “most appropriate” means at that
moment.

Having the ability to observe the behavior of the very same code
using different dispatchers is also interesting from an educational
point of view. Except for simple examples, determining the effects
that overloading, or multiple dispatching, or different techniques
have on more complex programs is not trivial. As we shall see
later, PolyD allows students to actually run the same code using
different mechanisms, and to compare critically the results.

Multiple invocation policies.While the basic invocation mod-
ule only needs to call the selected method, there is no reason why
multiple invocation policies should not be implemented. For in-
stance, one invocation policy could keep track of the methods calls
in order to profile the program, a different one could log all the
arguments and the return values for debugging purposes, and yet
another one could apply transparently security checks.

By creating custom invocation policies, or adapting existing ones,
new features can be introduced at the level of the method call with-
out having to deal with the complexity of the rest of the dispatcher.
Having the ability to alter the invocation stage, in other words,
allows the programmer to address cross-cutting concerns that are
typical of aspect-oriented programming, without requiring a static
code weaving. The new situation is reflected in Figure 7.

Selection
1

Selection
2

Selection
n

Language Runtime

Invocation
b

Invocation
a

Invocation
c

Figure 7: Modular composition of dispatchers

3.3 Method selection
An aspect that is not immediately obvious in Figure 4 is the de-

termination of the set of available methods from which the dis-
patching policy draws the most appropriate element. The dynamic
content of the message arguments is only part of the information
used by a dispatcher to locate the correct method. The informa-
tion available statically at each call site, namely the “static class”
that each argument appears to have at that point in the code, also
plays a factor. In the case of pure overloading, for instance, the

static information is the only information used used to perform the
selection. The diagram in Figure 8 shows the two-stage selection
process commonly used in use in object-oriented languages.

Static selection

All methods

Statically
selected set

Dynamic selection

One method

Call site
info

Runtime
arguments

Figure 8: Static and dynamic method selection

Such a structure is reorganized in our case as shown in Figure
9. The specific selection algorithms are encapsulated in the dis-
patching policy component, while the remaining implementation
aspects, including obtaining information for the call site and stor-
ing the statically preselected set, are demanded to a common frame-
work. This code organization is well reflected by the simple Dis-
patching Policy API of PolyD, described later in Section 4.13.

All methods

Statically
selected set

One method

Call site
info

Runtime
arguments

Static selection

Dynamic selection

Dispatching PolicyCore

Figure 9: Separating selection from implementation

3.4 More open choices
The dispatchers built into programming languages rely on a se-

ries of design choices, which cannot be altered by the program-
mer. We intend to allow the progrmmer to customize some of those
choices, allowing a greater degree of flexibility. Among the most
obvious choices are the handling of inheritance (whether to allow
multiple code inheritance, for instance), and the treatment of ambi-
guities. About the latter, ambiguities can be rejected, or precedence
lists can be used to resolve them (as in the case of CLOS/C++).

There are also other, possibly less obvious facets of the dispatch-
ing process that are also usually fixed. However, there is no intrin-
sic reason to deny to developers the ability to alter those aspects in
the way that they see fit. We will now discuss briefly two notable

aspects, and in Section 4 we will show how they can be controlled
in our framework, PolyD.

3.4.1 Null arguments
One area in which the design of the dispatching mechanism in-

volves elements of arbitrary choice is the handling ofnull argu-
ments. In the standard Java language,null belongs to a special
nameless type (there is no associated keyword). While it is not
possible to associatenull with any class,null is always a legal
argument when an object is expected, so the dispatcher must be
ready to deal with that special case. Since there is no run-time
class to base a method selection on, the implementation can adopt
different strategies.

A possible choice is considering allnull argument invalid, caus-
ing the dispatching code to fail, for instance throwing an exception.
That behavior is similar to the way in which Java natively operates
while dispatching on a single receiver. The rationale is that it is not
legal to send a message tonull since the value does not represent
a valid object. In the case of multimethods, however, the posi-
tion is less tenable. If all arguments to all calls are involved while
performing the dispatching,null values would be disallowed as
arguments altogether, which is an unreasonable restriction.

A different approach, with several sub-cases, consists in specify-
ing a way to obtain a default behavior if one or more of the argu-
ments arenull. One possible choice is to select the method with
the most specific applicable combination of classes (if unique).
This strategy, used by Java when resolving overloading, is linked
to the idea that the null type is a subtype of every other type in the
system. For example, consider the classesA, B, C, andD, with D
subclass ofC, C of B, andB of A, and the following definitions:

static void alpha(A x) { result("A"); }
static void alpha(B x) { result("B"); }
static void alpha(D x) { result("D"); }

alpha(null);
--> Result is "D"

The most specific method, according to the resolution mechanisms
used by Java, was chosen. Let’s suppose that classD2 is also a
subclass ofC, adding another method:

static void alpha(D2 x) { result("D2"); }

alpha(null);
Over.java:10: reference to alpha is ambiguous, both
method alpha(D) in Over and method alpha(D2) in Over
match
alpha(null);
^1 error

In this case the compiler is unable to find a single most specific
method, and compilation aborts. That only happens when Java stat-
ically knows that the argument isnull. While conceptually correct,
this strategy is not always the best choice on a practical level. In
Javanull is not a real object, and it is not possible to write meth-
ods that accept specificallynull arguments. The presence ofnull
indicates instead a special situation that should be handled appro-
priately, and a different strategy might be desirable. One option
is specifying a particular default methods that should be used. An
alternative is looking for the most general method applicable for
a certain combination of classes. Other strategies can also be de-
vised, depending on the specific circumstances.

3.4.2 Missing methods
Some dispatching policies cannot determine statically whether a

message will always find a valid matching method. For example,

a “non-subsumptive” dispatcher must examine the exact dynamic
type of the arguments to determine whether any method can be ap-
plied. Similarly, other strategies may need a special way to handle
messages with no matching methods. There are different possible
alternatives: ignoring the message, throwing an exception, or tak-
ing some user-defined action. The exact definition of the handler is
an additional customizable element in the definition of a dispatcher.

We have until now discussed the ways in which dispatchers can
be made more modular and customizable. It is now to put those
ideas into practice by creating a concrete modular dispatching in-
frastructure. The next section describes the implementation and the
features of PolyD, our flexible dispatching framework.

4. POLYD
PolyD is a pure Java tool that, using dynamic bytecode gener-

ation, allows the user to define customized dispatching policies,
altering many aspects of message dispatching that are usually pre-
determined and that cannot be easily changed.

In other words, using PolyD it is possible to define a set of meth-
ods and invoke them according to user-defined criteria. For ex-
ample, PolyD can be used to implement a visitor-like mechanism,
or general multiple dispatching, or more unusual dispatching poli-
cies. PolyD makes it possible to personalize many aspects of the
dispatching process: the handling of null arguments, of missing
methods, of ambiguities, of the method invocation, and so on. In
that respect, PolyD is a more general and flexible solution to the
"expression problem" than other tools.

As an added advantage, PolyD only uses standard Java, and does
not require special syntax, special bytecode, preprocessors, or cus-
tom virtual machines. The performance of the tool is well-suited
to real-life applications: for unary methods (methods with a single
argument) PolyD has performance similar, or even better, than the
Runabout and the Sprintabout; for other arities we find that PolyD
scales better than MultiJava and JMMF (more details on these tools
are available in Section 7).

Let’s see an introductory example.

4.1 QuickStart
Let us assume that we want to describe the effect of aPerson

dancing in a givenPlace. Using PolyD we shall define a suitable
dispatcher that selects the appropriate method. In this example we
will use multiple dispatching, although different policies could be
used. Java 1.5 annotations are used to denote PolyD specifications,
called “tags” in the text.

PolyD cleanly separates the interface that specifies the messages
from the implementing methods. This is the interface definition:

@ PolyD
@ DispatchingPolicy (MultiDisp.class)
interface Dance {

void dance(Person p,Place q);
}

The @PolyD tag is used as a marker to introduce a PolyD inter-
face. The@DispatchingPolicy tag informs the framework that
all specified methods will use that dispatching policy. We can now
write the implementing methods.

class Impl {
void dance(Dancer p, Stage q) {
printComment("Dance is an expression of art!");

}
void dance(Person p, Stage q) {
printComment("What is that guy doing on the stage?");

}
void dance(Person p, Place q) {
printComment("That person is dancing. Strange.");

}
}

The methods describe three possible responses to various combina-
tions of arguments. The dispatcher can now be used:

Person joe = new Person();
Place office = new Place();
Person nureyev = new Dancer();
Place bolshoi = new Stage();

Dance d = PolyD.build(Dance.class,new Impl());

d.dance(joe,bolshoi);
d.dance(nureyev,bolshoi);
d.dance(nureyev,office);

> What is that guy doing on the stage?
> Dance is an expression of art!
> That person is dancing. Strange.

Note that in all three cases the arguments todance() are statically
a Person and aPlace, but nothing more specific. Since multiple
dispatching is used in this example, however, dynamically the most
appropriate methods are chosen. We could try, in contrast, to use
overloading in the same example:

@ PolyD
@ DispatchingPolicy (Overloading.class)
interface Dance2 extends Dance {}
Dance d = PolyD.build(Dance2.class,new Impl());

The result is now:

> That person is dancing. Strange.
> That person is dancing. Strange.
> That person is dancing. Strange.

The same client code can be used with both dispatchers, obtaining
a different behavior according to the different policy.

4.2 More features
PolyD allows dispatching on an arbitrary number of receivers,

return values are supported as are primitive types. Interfaces can
define any number of prototypes, each using different dispatchers.
Multiple bodies can be specified with a single interface, enhanc-
ing the opportunities for code reuse and suggesting a “mixin-like”
approach:

Dance d = PolyD.build(Dance.class,body1,body2,body3);

All of the methods available in the various bodies will be combined
to satisfy the prototypes declared in the interface. It is also possible
to share one body among multiple dispatchers, and to call the same
group of methods using different names.

The standard dispatching policies available are multiple dispatch-
ing, overloading, and a ”non-subsumptive” policy that only calls a
method if the classes of the arguments match exactly those of the
method parameters. The policy that implements multiple dispatch-
ing policy also offers a form of symmetric multiple inheritance,
treating equally interfaces and classes (MultiJava, in contrast, only
deals with subclasses). It is possible to define personalized dis-
patching policies using a simple API, described later. Similarly,

@PolyD
@DispatchingPolicy(MultiDisp.class)
@InvocationPolicy(DebuggingInvocation.class)
public interface Dance {

Person test(long i,@IfNull(Place.class) Place p);

@Preload({
@Seq({Person.class,Office.class}),
@Seq({Worker.class,Workplace.class})

})
void dance(Person p,Place q);

int four(String a,char c,Object o,Place p);

@Name("dance")
@DispatchingPolicy(NonSubsump.class)
@OnMissing(Missing.IGNORE)
void nonSubsumpDance(Person a,Place b);

@Name("dance")
void danceSuper(@As(Person.class) Person a,Place b);

@Name("visit")
void visitAsPlace(@As(Place.class) Place p);

}

Figure 10: A more complex PolyD interface

is is possible to define custom invocation policies, which define
the operations that should be performed when a method is called.
For instance the policy can log all method calls, or inspect the ar-
guments on-the-fly for debugging purposes or security checks, or
gather statistics.

It is possible to specify exactly what should happen if null ar-
guments are encountered (an aspect that is rarely customizable in
programming languages), restrict the interpretation of the dynamic
class of arguments in order to implement variations on the "super"
concept, and define custom handlers for messages that cannot be
satisfied by any methods according to the dispatching policy in use.
Included is also a Runabout emulation layer, that allows existing
programs that use that tool to take advantage of the new features
without sacrificing compatibility. Figure 10 shows a more complex
example of a PolyD interface. All of the features shown in that
example are explained in detail in the following sections.

4.3 Building a Dispatcher
The construction of a dispatcher takes place usingPolyD.build().

As previously mentioned, it is possible to use multiple bodies for
every interface, as follows:

Interf d=PolyD.build(Interf.class,a,b,c);

wherea, b, andc are instances of three different classes. The meth-
ods of all those classes are combined to build the final dispatcher.
Only the methods specified in the interface are used to build the dis-
patcher; other methods in the bodies are treated as support methods.
The classes used for the bodies are not required to implement the
interface.

A method specified in the interface, with a certain name and ar-
ity, causes all public methods with same name and arity to be in-
cluded in the custom dispatcher. Multiple methods with same name
and arity can be specified in the interface. For instance:

@ PolyD
@ DispatchingPolicy (MultiDisp.class)
interface Several {
void test(A a, X x);
void test(X x, B b);

}

The methodtest() will be usable on arguments that respect the
shown combinations, but not others. The methods used in the in-
terface can be of arbitrary arity, and use and return any values, in-
cluding primitives.

4.4 @DispatchingPolicy
The tag@DispatchingPolicy is mandatory, and specifies the

way in which one method is selected when the dispatcher is used.
The tag can be added to the interface or to individual prototypes.
The tag on individual prototypes overrides the specification for the
whole interface. If all prototypes are individually tagged, the tag
on the interface is optional. Methods with the same name can be
resolved, if desired, in different ways. For example:

@ PolyD
interface Several {
@ DispatchingPolicy(Overloading.class)
void test(A a);

@ DispatchingPolicy(MultiDisp.class)
void test(C b);

}

If C andA are not related, the behavior is obvious. If, just to make a
convoluted example,C is a subclass ofA, the policy in use depends
on which of the two prototypes is chosen by Java, according to its
own overloading mechanism. If the argument is statically known
to be at least aC, multiple dispatching will be used, otherwise over-
loading is used instead. The standard dispatching policies available
are listed in the following subsections. Section 4.13 explains how
to create custom policies.

ovm.polyd.policy. MultiDisp
The policy implements a fully symmetric multiple dispatching, con-
sidering inheritance through subclasses and subinterfaces as equiv-
alent. Consequently, the policy also implements a form of multi-
ple inheritance simply by specifying different methods that accept
instances of different classes or interfaces that have a common de-
scendant.

If a dispatcher contains a method which uses this policy, and
the callPolyD.build() is completed successfully, all subsequent
method invocations will always find a matching method. In other
words, there will never be aMissingMethodException. The pol-
icy is also able to detect most ambiguities at dispatcher building
time, although some might be undetectable at this stage because of
Java’s dynamic loading. For example, a class and an interface that
appear unrelated might acquire a common descendant at any point
in time, generating a late ambiguity. The conflict, however, can be
discovered during the first dispatching that involves the new class.
If the list of combinations of arguments that are to be used with a
certain method is known in advance, then all ambiguities can be
detected at dispatcher building time (see Section 4.11). While our
default implementation of multidispatching makes sure that only
a single method will ever be eligible for a certain combination of
arguments, other policies can be easily created to use instead prece-
dence lists or any other resolution technique.

ovm.polyd.policy. Overloading
The policy mimics the usual static resolution adopted by Java on the
list of arguments. All ambiguities are detected statically (partly by
Java itself) and, if the callPolyD.build() completes successfully,
noMissingMethodException will ever be thrown.

ovm.polyd.policy. NonSubsump
The resolution rule used by theNonSubsump policy uses the method
implementation whose list of parameter classes matchesexactlythe
list of classes of supplied arguments. So, if we have a method de-
fined on “FieldAccess”, for example, the method will be called on
instances ofFieldAccess but not on instances of its subclasses. If
a call is made and the policy cannot find an implementation that
matches exactly, the call is ignored. Such behavior can altered if
desired, as explained in the next sections.

ovm.polyd. MissingMethodException
Some dispatching policies might be unable to establish at dispatcher
building time that all subsequent method calls will be successful. If
a dispatching policy is unable to find a suitable method for a given
combination of arguments, aMissingMethodException, although
every policy can define a custom response.

4.5 @OnMissing
The tag@OnMissing is used to describe the preferred handling

of those messages that have no matching method according to the
policy in use. If a tag is specified for the whole interface, and a dif-
ferent one is specified for a single prototype, the local one overrides
the global selection. The options accepted are the following:

ovm.polyd.Const.Missing. STANDARD
The handling of the error situation is demanded to theonMissing()
method contained in the selected dispatching policy. It is possible
to customize this aspect by creating a subclass of the desired policy
and overridingonMissing(). This option is the default.

ovm.polyd.Const.Missing. IGNORE
When a message does not match any method, the call is ignored.
If the method is supposed to return a value of some sort, a dummy
result is returned instead (zero, or null, or false).

ovm.polyd.Const.Missing. WARN
As above, but a warning message is additionally printed on the stan-
dard error stream.

ovm.polyd.Const.Missing. FAIL
The request for a message that does not match any available method
(according to the selected dispatching policy) causes an exception
MissingMethodException to be thrown.

ovm.polyd.Const.Missing. ABORT
If a matching method cannot be found, execution aborts.

4.6 @InvocationPolicy
In PolyD it is possible to specify additional actions that should

be executed when a method is called. A special invocation policy
can be attached to the whole interface or to individual prototypes.
If no invocation policy is specified, the method is simply called;
this is the default policy and also the faster mechanism. The use
of a custom invocation policy imposes some overhead during dis-
patching.

ovm.polyd.policy. PlainInvocation
Only supplied as an example, thePlainInvocation policy per-
forms a simple invocation, and returns the result supplied by the
called method. This policy can be used as a template to create cus-
tomized invocation policies.

ovm.polyd.policy. DebuggingInvocation
By adding this invocation policy to any interface or prototype, all
method calls will be logged to the standard output stream, together
with their arguments and their return values.

4.7 @IfNull
The valuenull has no class associated to it, and it it not possible

to extract the list of classes of the arguments necessary to determine
which method is the more appropriate one according to the given
policy. When one or more arguments can benull, PolyD offers
different ways to specify the default behavior. The tag@IfNull
can be added to an argument of a prototype in order to specify the
class that should be used when that argument isnull. For example:

void test(long i,@IfNull(Place.class)Place p);

The class used in the@IfNull must be equal or an arbitrary sub-
class of the corresponding argument. Independent@IfNull tags
can be added to the various parameters. The use of this construct
adds just a marginal overhead to the dispatching cost, and it is
the most convenient solution when good efficiency is desired. If a
more general mechanism is desired instead, it is possible to use the
remapNull() facility, described at the end of Subsection 4.13.1.

4.8 @As
In PolyD it is possible to override the dynamic interpretation of

the class of arguments using the@As tag. For example:

void dance(@As(Person.class) Person a,Place b);

The class specified by the tag can be identical or any superclass of
the class of the parameter, as long as compatible methods exist in
the bodies supplied to build the dispatcher. The main application of
the@As tag is the implementation of a generalized form of “super”,
that can be applied also in case of multiple inheritance or multiple
dispatching. In that sense, specifying an@AS class is similar to the
qualified super form available in C++. In PolyD, however, the class
can be any ancestor of the class of the parameter, and not necessar-
ily a direct superclass. Multiple@AS tags can be specified for the
different parameters. While this construct is sufficient to replicate
the functionality of “super” for individual prototypes, it might be
more practical to define a more general “super” mechanism. That
can be achieved by defining a custom dispatching policy that se-
lects, depending on the context, the correct method.

4.9 @Name
It can be useful to bind together prototypes and methods even if

their names differ. That effect can be obtained using the @Name
tag, as in the following example:

void dance(Person a,Place b);
...
@Name("dance")
@DispatchingPolicy(NonSubsump.class)
void nonSubsumpDance(Person a,Place b);

The two prototypes will both use the methodsdance() defined in
the bodies, but with different dispatching policies, or other different
features. The tag@Name is particularly useful in conjunction with
the @As tag in order to implement forms similar to “super”. For
example:

void dance(Person a,Place b);
...
@Name("dance")
void danceSuper(@As(Person)Person a,Place b);

The implementations ofdance() will also be accessible through
the name danceSuper(), but in that case the first argument will al-
ways be interpreted as a Person. The tag@Name can be applied to
prototypes in the interface as well as to individual methods directly
in the bodies.

4.10 @Self
The tag@Self can be applied to variables, declared in the imple-

menting bodies, in order to allow a method to call another method
using the same dispatcher that was used to reach the current method
in the first place. For example:

class Body {
@Self Interf self;

void m(B x) {
self.m2(x);

}
}

In the above example, the variableself will be automatically ini-
tialized when a dispatcher is created using the interfaceInterf, as
in:

PolyD.build(Interf.class,new Body());

There can be multiple variables tagged with @Self, and they may
refer to different interfaces. If a single body is shared among mul-
tiple dispatchers (which use distinct interfaces), each variable will
be initialized when the dispatcher corresponding to that interface is
built. For instance:

class Body {
@Self OverloadingInterface over;
@Self MultidispInterface multi;

void m(B x) {
over.m2(x);
multi.m2(x);

}
}
Body b=new Body();
y=PolyD.build(OverloadingInterface.class,b);
z=PolyD.build(MultidispInterface.class,b);
y.m(...)

4.11 @Preload
Each dispatching policy is free to decide how much checking

should be done statically (at dispatcher building time) or rather dy-
namically. For example, the standard policyMultiDisp performs
an extensive static checking making sure that, if the dispatcher is
built successfully, all successive method invocations will always
find a matching method. TheMultiDisp policy also tries to dis-
cover as many ambiguities in the method definitions as possible.

Java, however, is founded on dynamic class loading, and that im-
plies that new classes may introduce new ambiguities or conflicts
at a later stage, according to the rules of each particular dispatch-
ing policy. Consequently, some of the checks could require a lazy
approach, done after the main dispatcher construction. Such addi-
tional checks are only required for messages involving new classes,

and the results are still saved by the caching subsystem, so the over-
head is limited. If the classes that will be used to dispatch messages
are known in advance, and it is preferable to force an early detec-
tion of potential error conditions, the tag@Preload can be used to
force the same checks in an eager fashion. This is an example of
@Preload in action:

@Preload({
@Seq({Person.class,Office.class}),
@Seq({Worker.class,Workplace.class}),
@Seq({Dancer.class,Place.class}),
@Seq({Dancer.class,Office.class})

})
void dance(Person p,Place q);

The specified combinations of classes will be checked and preloaded
eagerly in the method cache of the dispatcher.

4.12 @Raw
The @Raw tag can be used to pass arguments directly from the

call site to the method selector. Such arguments will be removed
from the argument list prior to the actual method call. Only objects
or integers can be used as raw arguments.

Raw arguments can be used, for example, to identify specific
call sites, even if the regular method arguments are the same; that
information can be used to implement general forms of “super”.
For instance, let us have a class C subclass of B, and B subclass of
A.

class X {
void visit(C a) {
...
next.visit(X.class,C.class,a);

}
void visit(A a) {
...
next.visit(X.class,A.class,a);

}
}
class Y {
void visit(B a) {
...
next.visit(Y.class,B.class,a);

}
}

In this example, the first two arguments to the visit message identify
the specific call site, so that the method selector can decide which
one is the appropriate “next” method to call. The raw arguments
are used by the selector and removed, while the third argument is
passed on to the following visit method.

Another possible application of raw arguments is marking the
remaining arguments in order to modify their interpretation. For
instance, an enum class can define multiple states, and each raw
specification can modify the following argument:

d.message(WHITE,a,RED,b,RED,c,WHITE,d);

the raw arguments are separated and passed to the method selection.
Once the correct method is selected, taking into account the given
argument modifiers, the propermessage(a,b,c,d) will be called.

4.13 Custom Policies
It is possible, in PolyD, to define personalized dispatching and

invocation policies. The API is rather simple and the standard poli-
cies can be used as templates to develop new ones. This section can
be used as a general reference about the main aspects involved.

4.13.1 Dispatching Policies
Each dispatching policy defines different aspects of the method

selection and dispatching. The following are the main calls in-
volved in the policy definition.

compatibleSet.The routinecompatibleSet performs a static
preselection, finding in the supplied set of methods those that can
are applicable for a given call site, for this dispatching policy. This
routine can also be used to perform a consistency check on the
set of supplied methods, discovering duplicate methods, violation
in covariance rules, ambiguities, conflicts, and so on. If the se-
lection performed by the dispatching policy is entirely dynamic,
compatibleSet can just return the whole array of method given
as argument, without performing any preselection. In this case it
is not necessary to override, in the user-defined policy, the default
implementation.

The list of classes corresponds to the classes that can be deter-
mined statically for a given call site. However, such list is not nec-
essarily the actual list of specific static types of the arguments, but
it depends on what Java can discriminate according to the list of
prototypes in the interface used to build the dispatcher. An exam-
ple is required to make this aspect clear. Let’s assume that we have
a classA, its subclassB, and a subclass of the latterC.

interface I {
void m(A,B);
void m(B,C);

}
...
d.m(c,c);
d.m(b,c);
d.m(b,b);
d.m(a,b);

Even if we know statically thatc is of classC, b of B, anda of A,
the four call sites will only be discriminated according to what Java
knows according to the interface. The first two calls will be de-
termined statically to be(B,C), the last two(A,B). It is important
to keep this aspect present when implementing a policy that has a
component of static resolution.

bestMatch.The dynamic counterpart of the previous call is the
methodbestMatch, which determines in the preselected set the
one and only method that is more appropriate for the list of classes
supplied, representing the actual dynamic classes of the arguments
supplied by the message. The function should return the index in
the array of methods corresponding to the best match for the given
classes. If no suitable method is found,bestMatch returns -1.

handleMissing.The default behavior in case a suitable method
cannot be found is specified by the method OnMissing, defined in
each dispatching policy. Such method can be overridden in order to
implement the most appropriate handler for the specific case. The
routinehandleMissing() accepts as arguments the list of classes
that caused the special handling and the set of applicable methods
(which can have various names because of the@Name tag).

disableCaching.The standard method caching mechanism of-
fered by PolyD is disabled for this policy if this method returns
true. That enables the definition of policies that select different
methods at different times for the same combination of argument
classes. It can also be useful for debugging the policy.

4.13.2 remapNull
A general mechanism used to handlenull arguments is offered

by theremapNull() routine. When anull argument is encoun-
tered during dispatching, and no@IfNull clause is specified for the
corresponding parameter, control is transferred to theremapNull()
routine associated with the dispatching policy in use. The routine
remapNull() can be used, for instance, to find the most general
method that applies, or the most specific one, or to take whatever
action the programmer sees fit. The routine is supplied the unex-
pected sequence of argument classes, including nulls, and the list
of methods that are applicable to that call site. The result, if the
remapping is successful, is a new combination of classes, appropri-
ate to the context, that will be used to resume the dispatching pro-
cess. If no custom behavior is defined, aNullPointerException
is thrown by default.

4.13.3 Invocation Policy
The structure of an invocation policy is rather simple. A single

methodinvoke() needs to be defined:

public Object invoke(Object obj,Method m,Object[] args)

The method should perform all the additional operations required
by this policy and call the supplied method of the given object using
the given arguments. If some of the arguments are primitives, they
are wrapped and unwrapped following the conventions used by the
invoke() method of the reflective Java API.

4.14 Compatibility with pre-1.5 Java
By default PolyD uses Java annotations, and generates bytecode

compatible with Java 1.5. However, a pre-1.5 version of PolyD is
also automatically generated from the main source tree. All of the
features described thus far are therefore also available to older Java
VMs, using a specific API. The calls are necessarily more verbose,
but they are conceptually no more complicated than using the an-
notations that we have seen so far. In the following examples some
casts will be omitted for the sake of clarity.

4.14.1 Descriptors
The construction of dispatchers using the pre-1.5 compatible API

relies on Descriptors, which are used to accumulate the kind of
information that PolyD usually obtains exploring the annotations
on interfaces and bodies. A new descriptor is created using:

Descriptor d1=new Descriptor(Interf.class,
new Class[] {BodyA.class,BodyB.class});

This descriptor will be used to construct a dispatcher that uses the
interfaceInterf and two bodies of classBodyA andBodyB. The
dispatching policy can be added to the descriptor using:

d1.setDispatching(MultiDisp.class);

Similarly, the interface-wide handler for missing methods and in-
vocations policy are set using calls similar to the following:

d1.setInvocation(DebuggingInvocation.class);
d1.setMissingHandling(Missing.Ignore);

The properties of each individual method can be set by extracting
reflectively the method reference, and then using the appropriate
calls as follows:

mt=Dance.class.getMethod("visit",new Class[]{Place.class});

d3.setMethodDispatching(mt,MultiDisp.class);

d3.setMethodName(mt,"lxn");

d3.setMissingHandling(mt,Missing.Ignore);

d3.setMethodPreload(mt2,new Class[][]

{{String.class,Object.class},{Object.class,Place.class}});

d3.setMethodAsClasses(mt2,new Class[]{Place.class,null});

d3.setMethodNullDefaults(mt3,new

Class[]{null,Object.class,null});

The calls are self-explanatory, and mirror the annotations already
described. In the case of the callssetMethodAsClasses() and
setmethodNullDefaults(), each position in the array isnull at
the position in which no default is specified. The last property that
can be specified is the use of@Self variables:

f=Body.class.getField("self");
d3.setSelfField(f);

Once the descriptor is ready, it is possible to proceed with the cre-
ation of the actual dispatcher, using the facilities described in the
following subsections.

4.14.2 Factories
The more direct way to create a dispatcher is the use of a factory.

The creation of factories, and the creation of new dispatchers, is
illustrated by the following example:

Factory fact=d5.register();
Interf disp1=f1.getDispatcher1(bod1);
Interf disp2=f1.getDispatcher1(bod2);

This approach minimizes the time required to build a new dis-
patcher. If the descriptor was created specifying one body, the
methodgetDispatcher1() should be used, if two bodies are used
then use getDispatcher2() and so on up togetDispatcher4(). If
more than four bodies are used, the methodgetDispatcherN()
will accept an array of bodies. It is the responsibility of the pro-
grammer to pass togetDispatcher() bodies that are compatible
with the list of classes used to build the descriptor. If the require-
ment is not satisfied, the dispatcher creation will abort.

4.14.3 Registered Dispatchers
If, due to the structure of the client, it is not possible or practical

to pass around a factory, it is still possible to create dispatchers after
theregister() operation as follows:

d5.register();
...
Interf disp1=buildFromDescriptor(Interf.class,bod1);
Interf disp2=buildFromDescriptor(Interf.class,bod2);

After a descriptor is registered in the system, the creation of a new
dispatcher using buildFromDescriptor() will look for the more re-
cently registered descriptor associated with the supplied interface
and classes of bodies, and will use the corresponding implemen-
tation to build new dispatchers. The mechanism is functionally
equivalent to the use of factories, except for the speed penalty in-
volved in looking up into the internal maps to find the correct im-
plementation.

5. RUNABOUT EMULATION
In order to verify the usability of PolyD as a general tool, we

have integrated the framework in existing applications. The first

large application was Ovm, the open source framework for building
language runtimes developed at Purdue University. The source of
the project comprises about 400,000 lines of code (plus libraries),
and many of the internal operations of the framework are organized
in a visitor-like fashion. The second application we considered was
Kacheck/J, an encapsulation checker for Java which analyzes the
use of confined types in programs [30]. In order to integrate PolyD
in the existing code base, we have developed a Runabout emulation
layer exploiting the ability of PolyD to integrate new dispatching
strategies into its structure with minimal effort.

The core method resolution strategy of the Runabout was con-
verted into a custom dispatching policy for PolyD, reproducing
faithfully the mode of operation of the original tool. The new policy
consists of less than 150 lines of code. In order to ease debugging,
two new invocation policies were added in order, respectively, to
perform a customized logging and to keep a count of all the cre-
ations of new dispatchers and the number of times each of them
is used. The two new invocation policies had less than 50 and 75
lines of code respectively. Using these extremely simple modules,
the existing dispatching engine of PolyD was very easily converted
into a functional replica of the Runabout, while making no modifi-
cation to the dispatching core. Using this emulation layer, PolyD,
has then been integrated in the applications that we mentioned ear-
lier. As discussed later, the resulting performance was comparable
to the original, showing even some gain. The additional features
of PolyD (the custom invocation policies, for example) are made
available to the applications without requiring relevant changes to
the client code. The following subsections list the main compo-
nents included in the emulation layer.

ovm.polyd.legacy. RunaboutBis
RunaboutBis is a rather accurate replacement for the Runabout
class. It does support the standardvisitAppropriate(Object)
andvisitAppropriate(Object,Class), it supportsthe method
visitDefault() and it handles primitives. It does not emulate
the special calladdExternalVisit(), but it is an otherwise quite
faithful emulation.

ovm.polyd.legacy. RunaboutCore
This emulation is similar toRunaboutBis but it offers no support
for primitives and is slightly faster. The features are otherwise the
same.

ovm.polyd.legacy. RunaboutStat
RunaboutStat is based onRunaboutCore and similar features.
While it runs, it keeps a track of all the dispatchers created and
invoked. The final report can be obtained by calling Runabout-
Stats.printStats().

ovm.polyd.legacy. RunaboutQuick
The RunaboutQuick is a faster implementation that directly uses
factories to speed up the creation of new dispatchers. It always ig-
nores missing methods and does not handle primitives. The source
of the client code requires minimal modifications to the dispatcher
creation to take advantage of this implementation.

ovm.polyd.legacy. RunaboutDisp
This dispatching policy contains a port of the core method selection
strategy used by the Runabout. The module is a perfectly standard
PolyD dispatching policy, and therefore it can be used indepen-
dently from the emulation layer, subclassed if desired, and further
customized.

6. PERFORMANCE
The performance levels offered by PolyD for single-argument

methods are competitive with those of related, but less general,
tools, as will be shortly shown. In the case of multiple-argument
methods, we find that PolyD can offer higher dispatching speed
than other multidispatching tools, exhibiting a dramatically bet-
ter performance when increasing the number of methods. We now
briefly describe the implementation mechanism, and subsequently
discuss the benchmarking tests.

6.1 Implementation details
The implementation of PolyD has been tuned to offer perfor-

mance levels suitable for concrete, realistic uses. PolyD was in-
tegrated and tested in real applications, in particular in the Ovm
framework, which comprises about 400,000 lines of code and makes
intense use of visitor-like dispatching. In order to maximize the
dispatching efficiency, PolyD combines a reflective approach with
dynamic bytecode generation and caching, getting inspiration by its
single-argument predecessor, the Runabout. In the case of PolyD,
the construction of the dynamically generated bytecode is consid-
erably more complicated because of the many parametric aspects
involved. Our code generator relies on the ASM framework [10].

When a new combination of interface/bodies is encountered for
the first time, the annotations that define the behavior of the new
dispatcher are parsed and checked. A new synthetic class is then
created on-the-fly, so that all of the prototypes defined in the in-
terface are implemented with an adaptor routine that performs the
actual dispatching. The compatibility between the prototypes and
the list of available bodies is verified using the policy-specific defi-
nitions. Each adaptor, dynamically, extracts the classes of the argu-
ments, generates a hash value and looks up in the cache the index
of the most appropriate method. The index is then used with a
switch table to jump to the correct handler, calling in the end the
desired method. More in detail, the list of arguments is extracted,
with @As annotations overriding the classes of the arguments. Null
arguments are checked when indicated by the@Null tag. If an un-
handled null argument is encountered,remapNull() is invoked.
The resulting sequence of classes is hashed and a lookup is per-
formed in the local cache, which is shared among all the dispatch-
ers that use the same interface/bodies combination. If no matching
entry is found, control is passed to an external routine that updates
the cache using the appropriatebestMatch(), taking care of syn-
chronization issues, and eventually returns the index of the most
appropriate method. If no suitable method is found, the error is
handled as specified by the@OnMissing tag, possibly calling the
onMissing() handler. Otherwise the index is used as a selector in
a switch statement, reaching the invocation stage. If no special in-
vocation policy is used, the appropriate body among those supplied
at dispatcher-construction time is used to call the correct method,
taking into account the renaming imposed by the@Name tag. If a
special invocation policy is required, the correspondinginvoke()
handler is used, wrapping and unwrapping the arguments and the
return value as necessary.

Despite the lengthy description, great effort was spent into min-
imizing the time required for message dispatching and for the con-
struction of new dispatchers. The dispatching fast path is quite
short and consists of just a handful of bytecode instructions. The
creation of new dispatchers takes place by simply instantiating the
synthetic class and setting up a few fields. A fast dispatcher cre-
ation time is particularly important if a large number of dispatch-
ers are generated, as it was the case for the applications that we
tested. During the creation of a new virtual machine for a short
test program the Ovm compiler creates about 230,000 dispatchers,

Dispatching time: unary methods, 10M invocations

0

500

1000

1500

2000

2500

3000

3500

4000

2 22 42 62 82 10
2
12
2
14
2
16
2
18
2
20
2
22
2
24
2
26
2
28
2
30
2
32
2
34
2

Number of methods

M
il
li
se

co
n

d
s

PolyD

MultiJava

JMMF

(a) Unary methods, flat hierarchy, linear scale

Dispatching time: binary methods, 10M invocations

0

500

1000

1500

2000

2500

3000

3500

4000

2 5 10 17 26 37 50 65 82 10
1
12
2
14
5
17
0
19
7
22
6
25
7
29
0
32
5
36
2
40
1
44
2

Number of methods

M
il
li
se

co
n

d
s

PolyD
MultiJava
JMMF

(b) Binary methods, flat hierarchy, linear scale

Dispatching time: ternary methods, 10M invocations

0

500

1000

1500

2000

2500

3000

3500

4000

2 9 28 65 126 217 344

Number of methods

M
il

li
se

co
n

d
s

PolyD
MultiJava
JMMF

(c) Ternary methods, flat hierarchy, linear scale

Figure 11: PolyD, MultiJava, JMMF

which are collectively used approximately 5,900,000 times. The
Kacheck/J tool, used to parse the rt.jar file from a Sun JDK, creates
about 285,000 dispatchers, and uses them about 9,400,000 times.

6.2 Benchmarking
We evaluated the performance of our implementation by adapt-

ing two existing applications, using PolyD as the core infrastructure
for the visitor-style dispatching. The execution time of the PolyD
version was then compared with the Runabout version of the same
applications. Additionally, a number of microbenchmarks were run
comparing PolyD against Runabout, Sprintabout, Dynamic Dis-
patcher, MultiJava, the Java Multi-Method Framework (JMMF),
and plain visitors (references on these systems are available in Sec-
tion 7). All benchmarks were run on an AMD AthlonTM XP1900+
at 1600MHz, 1GB of RAM, running Red Hat Linux (kernel 2.4.20),
and Sun’s JDK 1.5.0 in server mode. All of the timings shown in
the tables and the graphs are averages of at least ten runs.

The first application used for the test is Kacheck/J, an encapsula-
tion checker which analyzes the use of confined types in programs
in Java programs. The performance of the PolyD version of the
application was found to be similar, or slightly better, to the per-
formance of the Runabout version. Figure 12 shows a comparison
of the running time required by Kacheck/J to detect encapsulated
types in the rt.jar file contained in Sun’s 1.4.2-03 JDK. Similar fig-
ures were found for the Ovm framework: the numbers in Figure
12 refer to the execution time of the ahead-of-time compiler while
processing a test program (with all the libraries), up to the code
generation stage.

Execution
time (sec.)

Kacheck
client VM

Kacheck
server VM

Ovm
server VM

PolyD 21.707 22.921 104.165
Runabout 22.201 22.966 104.297

Kacheck: 285,656 dispatchers created
9,384,595 invocations

Ovm: 226,620 dispatchers created
5,864,145 invocations

Figure 12: Speed comparison, Kacheck/J and Ovm

Detailed tests were also performed using microbenchmarks, in
particular comparing the relative performance of PolyD and other
tools when dealing with visitors, or multimethods, defined over
a progressively larger hierarchy of classes. PolyD was compared
against MultiJava and JMMF when dealing with unary, binary, and
ternary methods. The expected result was that PolyD, thanks to
its hashing core, should scale well moving towards more complex
systems. The experimental results confirm our intuition.

MultiJava, which relies on a chain of “instanceof” tests, has
a good efficiency when just a few methods are involved, but the
longer sequence of tests causes a severe performance degradation
when a higher number of methods are involved. The graphs show
the timings obtained using JDK 1.5.0 in server mode using a flat
hierarchy, in which a single superclass has a number of direct sub-
classes, or a deep hierarchy, in which all classes are arranged in a
chain. Using a flat hierarchy, for unary methods PolyD achieves
a higher dispatching speed than MultiJava when more than about
50 methods are defined. For binary methods, PolyD is faster when
dealing with more than about 15 methods. Using a deep hierar-

chy the performance of MultiJava degrades even more rapidly, and
PolyD shows better dispatching speed when using as few as 9 meth-
ods in the unary case, as shown in Figure 16.

JMMF, which operates reflectively, exhibited much slower dis-
patching times. We encountered some unexpected exceptions us-
ing JMMF for certain method combinations, and that is reflected
in the missing samples in the graphs. The benchmarks show that
PolyD, in addition to its extensive features set, is also an efficient
solution for general multiple dispatching, scaling much better than
other tools when dealing with complex systems.

Regarding the visitor-like tools, Figures 14 and 16 compare PolyD
against the Runabout, the Sprintabout, and other tools. The Dy-
namic Dispatcher and JMMF required a considerably longer time
to complete the tests than the other tools, and their graph is out
of scale. Figure 15 displays the relative performance of PolyD,
Runabout, and Sprintabout when a larger number of methods are
involved.

The dispatching efficiency of the three tools results overall com-
parable. That should not be too surprising considering that they
all rely on class hashing and on method caching to speed up perfor-
mance. PolyD exhibits a good level of performances despite having
to cater for a much more general system. The experimental mea-
surements confirm that PolyD can be used as a more general, and
equally efficient, replacement for existing visitor-like tools.

7. RELATED WORK
A number of tools have been developed to extend the native dis-

patching mechanism offered by Java. A relevant class of tools aim
to provide features similar to the classic Visitor pattern [28], but im-
proving on the implementation. Palsberg and Jay were the first to
suggest that the use of a reflective approach would obviate the need
for accept() methods, implementing the Walkabout [42]. Braven-
boer and Visser improved on the idea by adding a cache in order to
reduce the cost of reflective lookups [9], as these were extremely
costly in early implentations of Java. Grothoff further improved ef-
ficiency by using runtime bytecode generation; his tool is known
as the Runabout [29]. A similar approach, albeit with lower per-
formance, was also used by the Dynamic Dispatcher [11]. The
mechanism used by the Runabout was refined by Forax et.al. in
the Sprintabout [26]. Their tool, like PolyD, uses a table-based dis-
patcher. Visitors have been proposed as a native language feature,
in the Peripaton language [46].

Several projects add multiple dispatching to Java, either by sup-
plying the feature in the form of a library or by requiring special
syntax, preprocessors, or virtual machines. MultiJava [16] uses a
special syntax and a preprocessor. It also does not dispatch follow-
ing interfaces and subinterfaces, but is limited to single inheritance.
JMMF [25] works solely using reflection, but suffers from low per-
formance. The system described by Dutchyn et al. [20] changes the
semantics of Java dispatching, and uses a custom VM.

Other notable Java tools or proposals advocate alternate forms of
dispatching, although none of them relies on pure Java: JPred [35]
implements a general form of predicate dispatching; Boyland and
Castagna use Parasitic Methods [8] to implement a restricted form
of multimethods; Tuple [34] implements multidispatching as dis-
patching on tuples; the Half&Half paper [5] suggests the addition
of multimethods and retroactive abstraction to Java; Nice [38] and
Kiev [32] are two Java derivatives that include multimethod fea-
tures. Proposals for adding multidispatching to other languages
also exist. For example, Foote, Johnson, and Noble add multimeth-
ods to Smalltalk-80 [24].

PolyD separates the dispatching concerns from the main pro-
gram code, and as such it can be seen as a specialized aspect-

Dispatching time: unary methods, 10M invocations

1

10

100

1000

10000

100000

2 22 42 62 82 10
2
12
2
14
2
16
2
18
2
20
2
22
2
24
2
26
2
28
2
30
2
32
2
34
2

Number of methods

M
il
li
se

co
n

d
s

PolyD

MultiJava

JMMF

(a) Unary methods, flat hierarchy, logarithmic scale

Dispatching time: binary methods, 10M invocations

1

10

100

1000

10000

100000

2 5 10 17 26 37 50 65 82 10
1
12
2
14
5
17
0
19
7
22
6
25
7
29
0
32
5
36
2
40
1
44
2

Number of methods

M
il

li
se

co
n

d
s

PolyD
MultiJava
JMMF

(b) Binary methods, flat hierarchy, logarithmic scale

Dispatching time: ternary methods, 10M invocations

1

10

100

1000

10000

100000

2 9 28 65 126 217 344

Number of methods

M
il

li
se

co
n

d
s

PolyD
MultiJava
JMMF

(c) Ternary methods, flat hierarchy, logarithmic scale

Figure 13: PolyD, MultiJava, JMMF

Dispatching time, flat hierarchy, 10M invocations

0

100

200

300

400

500

600

700

Number of methods

M
il
li
se

co
n

d
s

PolyD
Runabout
Sprintabout
MultiJava
Visitors
JMMF
Dyn.Disp.

PolyD 253.3 318.4 320.3 351.4 358.8 373.1 394.3 408.9 380.6 398 400.1 410.7 403.2 409.4 422.8 433.6 428.9 434.1 446.5

Runabout 343.1 413.5 428.4 421.7 426 430.2 459.4 442.8 441.3 456.3 432.3 455.9 433.9 448.1 457.1 455.3 445.7 445.9 447.9

Sprintabout 291.1 340.8 373.5 420.7 421.8 420.2 448.2 434.8 443.8 435.1 457.7 454.6 469.1 481.2 472.4 460.7 496.1 462.4 473.3

MultiJava 122.3 199.3 212.3 227.3 240.5 253.3 267.3 273.4 287.6 295.2 309.6 312.2 328.8 331.7 346.4 351.9 365.5 368.8 385.2

Visitors 82.5 214.8 223.8 228.1 233.3 236.2 237.5 241.7 240.3 240.7 243.1 242.8 244.3 246.3 244.6 244.7 246 247.3 246.9

JMMF 1629 1983 2048 2130 2106 2125 2197 2242 2262 2251 2349 2388 2299 2485 2377 2433 2433 2629 2534

Dyn.Disp. 4142 4262 5167 6118 7022 7953 8791 9648 10542 11394 12268 13118 14013 14899 15832 16690 17716 18429 19301

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 14: Speed comparison, flat hierarchy

Visitor tools, flat hierarchy, 10M invocations

0

100

200

300

400

500

600

700

800

900

1000

2 18 34 50 66 82 98 11
4
13
0
14
6
16
2
17
8
19
4
21
0
22
6
24
2
25
8
27
4
29
0
30
6
32
2
33
8

Number of methods

M
il
li
se

co
n

d
s

PolyD
Runabout
Sprintabout

Figure 15: Speed comparison, more methods, flat hierarchy

oriented system. In that perspective, the functionalities offered by
PolyD could be made part a general aspect framework as, for in-
stance, XAspects [43]. The Fred/Socrates system [40] brings to-
gether elements of predicate dispatching and aspect oriented pro-
gramming, allowing the programmer to define multiple “branches”,
corresponding to a given message, selected using boolean predi-
cates but which can also be refined in stages. However, in Fred
both the predicate and the body are part of the code that describes
each branch. PolyD, conversely, totally segregates the selection
logic, allowing for instance the same bodies to be selected through
different policies. In that sense, PolyD is more clearly a special-
ized aspect language in which the dispatching concern is clearly
confined, rather than being distributed throughout the code.

Open classes and the extensibility problem, also known as the
expression problem, are extensively discussed in literature [47, 33,
45, 41].

8. FUTURE WORK
We are planning several enhancements and further developments

for our framework. In terms of improvements to the current code
base, the dispatching core could be optimized when a small number
of methods are involved and a sequence of tests can replace the
method lookup for the specific policy in use. That would allow us
to implement, for instance, multiple dispatching more efficiently

Dispatching time, deep hierarchy, 10M invocations

0

100

200

300

400

500

600

700

800

900

Number of methods

M
il
li
se

co
n

d
s

PolyD
Runabout
Sprintabout
MultiJava
Visitors
JMMF
Dyn.Disp.

PolyD 256.1 287.8 332.6 343.3 356.8 368.6 383.5 410.4 408.8 432.3 428.8 439 464.3 447.8 472.5 437.3 440.8 470.3 489.7

Runabout 342.8 404.9 423.3 440.1 433.9 438.5 456.4 444 473.8 446.3 449.9 464.6 456.7 487 479.3 474.3 482.8 475.8 470

Sprintabout 292.3 347 381.2 423.2 455.4 433.6 438.5 440.2 460.9 461 481.7 490.2 510.8 503.5 507.6 507.3 519.9 502.6 519.4

MultiJava 122.3 186.1 221.7 248.4 262 275.9 295.4 457.3 574.2 717.4 827.8 963.6 1091 1214 1335 1468 1593 1723 1871

Visitors 82.42 195.4 214 223.9 229 233.4 236 237.3 238.6 240.3 244.1 242.8 243.3 244 244.4 244 244.8 246.4 245.7

JMMF 1627 1879 1982 2054 2148 2150 2173 2239 2256 2321 2504 2409 2496 2532 2513 2544 2681 2640 2659

Dyn.Disp. 4196 5119 6099 7324 7885 8754 10010 11112 12293 13312 14399 15451 16551 17711 18755 19842 20936 22012 23264

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 16: Speed comparison, deep hierarchy

for fewer methods, while retaining the considerable advantages of
hashing when building larger systems. Other minor improvements
are also planned in order to optimize performance when dealing
with final classes, and in other particular cases.

More general developments are also planned. PolyD currently
allows the user to select, via a modular policy, the “most appropri-
ate” method according to the classes of the arguments as obtained
using the reflective features of Java. We are considering defining a
parallel reflective API, enabling the user to define an independent,
user-defined pseudo-class hierarchy. That should facilitate an easy
prototyping of more unusual forms of inheritance (virtual types, for
instance), together with their dispatching mechanisms.

9. CONCLUSIONS
Object-oriented programming languages adopt predefined mes-

sage dispatch strategies that compromise between performance and
flexibility requirements needs of most applications. While prag-
matic, this approach leaves programmers with the responsibility of
hand coding their own dispatchers when the default mechanisms
fall short. A number of tools attempt to ease such task by adding
specific dispatching extensions. In this paper, we propose a more
general solution based on a modular approach to dispatching. We
put our ideas into practice by developing a flexible dispatching
framework for Java that enables programmers to define customized
dispatching strategies that are better suited for the task at hand.

We show that our implementation, PolyD, is a tool that can re-
place, offering a more general solution, both visitor-derived and
multimethod tools. The performance of PolyD is comparable to,
and often exceeds, that of the Runabout and related tools, while at
the same time offering more flexibility. When used as a multidis-
patching package, PolyD scales better than MultiJava and JMMF,
showing a dramatic improvement over both tools when the number
of methods increases. The PolyD framework is a pure Java solution
that uses the standard Java runtime, bytecode, and syntax.

The extensive set of features offered by PolyD encompasses many
aspects of the dispatching process that are not customizable in com-
parable systems, including a custom handling of missing methods,
of null arguments, of method selection, and of method invocation.
The dispatchers generated by PolyD share a common, efficient dis-
patching core, which ensures a high dispatching performance. In
conclusion, we claim that PolyD is a flexible, general, and efficient
framework that can free developers from the limitations of conven-
tional dispatching mechanisms.

PolyD can be freely downloaded fromwww.ovmj.org/polyd.

10. ACKNOWLEDGMENTS
We thank Christian Grothoff, Rémi Forax, Etienne Duris, James

Noble, Jeremy Manson, and James Baker for contributing to this
work with discussions, documentation, and ideas. We also thank
the anonymous reviewers for their useful and insightful comments.

This work was partially supported by NSF Grants HDCCSR-
0341304 and CAREER-0093282.

11. REFERENCES
[1] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static type

checking of multi-methods. In A. Paepcke, editor,OOPSLA
’91 Conference Proceedings, volume 26(11) ofACM
SIGPLAN Notices, pages 113–128, New York, NY, Nov.
1991. ACM.

[2] The AspectJ home page.
http://http://eclipse.org/aspectj.

[3] J. Baker and W. C. Hsieh. Maya: Multiple-dispatch syntax
extension in Java. InProceeding of the ACM SIGPLAN 2002
Conference on Programming language design and
implementation, volume 37(5) ofSIGPLAN Notices, pages
270–281. ACM, May 2002.

[4] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Playford,
and P. T. Withington. A monotonic superclass linerization for
Dylan. InProceedings OOPSLA ’96 Conference on
Object-Oriented Programming Systems, Languages, and
Applications, volume 31 ofACM SIGPLAN Notices, pages
69–82. ACM, Oct. 1996.

[5] G. Baumgartner, M. Jansche, and K. Läufer. Half & Half:
Multiple dispatch and retroactive abstraction for Java.
Technical Report OSU-CISRC-5/01-TR08, Department of
Computer Science, The Ohio State University, Mar. 2002.

[6] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene,
G. Kiczales, and D. A. Moon. Common Lisp Object System
specification.SIGPLAN Not., 23(SI):1–142, 1988.

[7] F. Bourdoncle and S. Merz. Type-checking higher-order
polymorphic multi-methods. InConference Record of POPL
’97: the 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 302–315, New
York, NY, 1997. ACM.

[8] J. Boyland and G. Castagna. Parasitic methods: an
implementation of multi-methods for Java. InConference
Proceedings of OOPSLA ’97, volume 32(10) ofACM
SIGPLAN Notices, pages 66–76, New York, NY, Oct. 1997.
ACM.

[9] M. Bravenboer and E. Visser. Guiding visitors: Separating
navigation from computation. Technical Report
UU-CS-2001-42, Institute of Information and Computing
Sciences, Utrecht University, 2001.

[10] É. Bruneton, R. Lenglet, and T. Coupaye. ASM: a code
manipulation tool to implement adaptable systems. In
Proceedings of the ASF (ACM SIGOPS France) Journées
Composants 2002 : Systèmes à composants adaptables et
extensibles (Adaptable and extensible component systems),
Grenoble, France, Nov. 2002.

[11] F. Büttner, O. Radfelder, A. Lindow, and M. Gogolla.
Digging into the visitor pattern. InProceedings of the
Sixteenth International Conference on Software Engineering
& Knowledge Engineering (SEKE’2004), Banff, Alberta,
Canada, pages 135–141, June 2004.

[12] C. Chambers. Object-oriented multi-methods in Cecil. In
ECOOP ’92, European Conference on Object-Oriented

Programming, Utrecht, The Netherlands, volume 615 of
Lecture Notes in Computer Science, pages 33–56.
Springer-Verlag, 1992.

[13] C. Chambers and W. Chen. Efficient multiple and predicate
dispatching. InProceedings of the 1999 ACM Conference on
Object-Oriented Programming Languages, Systems, and
Applications (OOPSLA ’99), volume 34(10) ofACM
SIGPLAN Notices, pages 238–255, New York, NY,
November 1999. ACM.

[14] C. Chambers and G. T. Leavens. Typechecking and modules
for multi-methods. InOOPSLA ’94 Conference Proceedings,
volume 29(10) ofACM SIGPLAN Notices, pages 1–15, Oct.
1994.

[15] C. Clifton. MultiJava: Design, implementation, and
evaluation of a Java-compatible language supporting
modular open classes and symmetric multiple dispatch.
Technical Report 01-10, Department of Computer Science,
Iowa State University, Ames, Iowa, 50011, Nov. 2001.
Available fromwww.multijava.org.

[16] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. InOOPSLA 2000 Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, volume 35(10) ofACM SIGPLAN Notices,
pages 130–145, New York, NY, Oct. 2000. ACM.

[17] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Design rationale, compiler implementation, and
user experience. Technical Report 04-01, Iowa State
University, Dept. of Computer Science, Jan. 2004. Submitted
for publication.

[18] M. Cutumisu. MCI-Java: A modified Java virtual machine
approach to multiple code inheritance. InVirtual Machine
Research and Technology Symposium, pages 13–28.
USENIX, 2004.

[19] L. G. DeMichiel and R. P. Gabriel. The Common Lisp
Object System: An overview. InECOOP ’87, European
Conference on Object-Oriented Programming, Paris,
France, pages 151–170. Springer-Verlag, June 1987. Lecture
Notes in Computer Science, Volume 276.

[20] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst.
Multi-Dispatch in the Java Virtual Machine: Design and
Implementation. InProceedings of 6th Usenix Conference on
Object-Oriented Technologies and Systems (COOTS’2001),
pages 77–92, 2001.

[21] M. D. Ernst, C. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. InECOOP ’98:
12th European Conference on Object-Oriented
Programming, Brussels, Belgium, volume 1445 ofLecture
Notes in Computer Science, pages 186–211, New York, NY,
1998. Springer-Verlag.

[22] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. InProceedings of the
ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), volume 34(1) ofACM SIGPLAN
Notices, pages 94–104, New York, NY, June 1999. ACM.

[23] M. Flatt, S. Krishnamurthi, and M. Felleisen. A
programmer’s reduction semantics for classes and mixins. In
Formal Syntax and Semantics of Java, volume 1523 of
Lecture Notes in Computer Science, pages 241–269.
Springer, 1999.

[24] B. Foote, R. E. Johnson, and J. Noble. Efficient
multimethods in Smalltalk-80. InProceedings of the

European Conference on Object-Oriented Programming,
Glasgow, Scotland, July 2005.

[25] R. Forax, E. Duris, and G. Roussel. Java Multi-Method
Framework. InInternational Conference on Technology of
Object-Oriented Languages and Systems (TOOLS ’00),
Sydney, Australia, Los Alamitos, California, Nov. 2000.
IEEE Computer Society Press.

[26] R. Forax, E. Duris, and G. Roussel. Reflection-based
implementation of Java extensions: The double-dispatch
use-case. InProceedings of the 2005 ACM symposium on
applied computing, New York, 2005.

[27] R. Forax and G. Roussel. Recursive types and
pattern-matching in Java. InGCSE, volume 1799 ofLecture
Notes in Computer Science, pages 147–164. Springer, 1999.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[29] C. Grothoff. Walkabout revisited: The Runabout. In
L. Cardelli, editor,Proceedings of ECOOP ’03, volume 2743
of LNCS, pages 103–125. Springer-Verlag, July 2003.

[30] C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects
with confined types. InProceedings of OOPSLA ’01, pages
241–255. ACM Press, Nov 2001.

[31] W. Holst and D. Szafron. A general framework for
inheritance management and method dispatch in
object-oriented languages. InProceedings of ECOOP ’97:
European Conference on Object-Oriented Programming,
pages 276–301, 1997.

[32] The Kiev language home page.
http://kiev.forestro.com.

[33] S. Krishnamurthi, M. Felleisen, and D. P. Friedman.
Synthesizing object-oriented and functional design to
promote re-use. InECOOP’98, volume 1445 ofLecture
Notes in Computer Science, pages 91–113, Brussels,
Belgium, July 1998. Springer-Verlag.

[34] G. T. Leavens and T. D. Millstein. Multiple dispatch as
dispatch on tuples. InProceedings of OOPSLA ’98, volume
33(10) ofACM SIGPLAN Notices, pages 374–387. ACM,
Oct. 1998.

[35] T. Millstein. Practical predicate dispatch. InProceedings of
OOPSLA ’04, volume 39(11) ofACM SIGPLAN Notices,
pages 345–364. ACM, Oct. 2004.

[36] T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava:
Balancing extensibility and modular typechecking. In

Proceedings of the 2003 ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, volume 38(11) ofACM SIGPLAN Notices,
pages 224–240, New York, NY, Nov. 2003. ACM.

[37] T. D. Millstein and C. Chambers. Modular statically typed
multimethods.Journal of Information and Computation,
175(1):76–118, 2002.

[38] The Nice language home page.
http://nice.sourceforge.net.

[39] M. E. Nordberg III. Variations on the visitor pattern. In
Proceedings of The Joint Pattern Languages of Programs
(PLoP). Addison-Wesley, Sept. 1996.

[40] D. Orleans. Incremental programming with extensible
decisions. InFirst International Conference on
Aspect-Oriented Software Development, Enschede, The
Netherlands, 2002. ACM Press.

[41] K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi, and
J. Vitek. Engineering a customizable intermediate
representation. InProceedings of the ACM SIGPLAN
Workshop on Interpreters, Virtual Machines and Emulators,
(IVME’03), San Diego, California, June 2003.

[42] J. Palsberg and C. B. Jay. The essence of the visitor pattern.
In Proc. 22nd IEEE Int. Computer Software and
Applications Conf., COMPSAC, Vienna, Austria, pages 9–15.
IEEE, Aug. 1998.

[43] M. Shonle, K. J. Lieberherr, and A. Shah. XAspects: An
Extensible System for Domain Specific Aspect Languages.
pages 28–37, Anaheim, California, 2003. ACM Press.
Special Track on Domain-Driven Development.

[44] B. Stroustrup. Multiple inheritance for C++. InProceedings
of the Spring 1987 European Unix Users Group Conference,
Helsinki, 1987.

[45] M. Torgersen. The expression problem revisited: Four new
solutions using generics. InECOOP ’04 - Object-Oriented
Programming European Conference, volume 3086, pages
123–143. Springer-Verlag, 2004.

[46] T. VanDrunen and J. Palsberg. Visitor-oriented
programming. InProceedings of FOOL-11, the 11th ACM
SIGPLAN International Workshop on Foundations of
Object-Oriented Languages, Venice, Italy, January 2004.

[47] M. Zenger and M. Odersky. Independently extensible
solutions to the expression problem. Technical Report
IC/2004/33, École Polytechnique Fédérale de Lausanne,
2004.

