Department of
Computing Science

UNIVERSITY Ph.D. Thesis
of
GLASGOW

Use of Preemptive Program Services
with Optimised Native Code

Antonio Cunei

Submitted for the degree of
Doctor of Philosophy

at the University of Glasgow

August 2004

(© 2004, Antonio Cunei

Typeset on 18th August 2004.

This Ph.D. thesis was prepared using tfigX typesetting system, and composed usingAfiygeX-
oriented open source editoyX. The style file used for typesetting was originally customised by
Tony Printezis. The fonts used are Times for standard AexihtGarde for the chapter headings,
Helvetica for section headings and page numbers;rier for the code, andzapfChancery for

the quotations.

Nothing worth doing is easy.
— Old adage

Abstract

In modern computer systems, the normal execution of a thread may be temporarily suspended to
allow a service routine to manipulate the thread memory and state. For instance, a garbage col-
lector could modify the content of the heap to free up unused memory, or a migration mechanism
could extract the thread state and move it on a different machine. The execution of those service
routines may either be visible from the user program or it might happen in a transparent way,
depending on the techniques used and on the implementation.

If a service routine can intervene in the normal program execution in a preemptive fashion, the
normal thread activity may be interrupted, potentially, at any point. If optimised native code is
being executed, the thread suspension could happen at any arbitrary machine instruction. How-
ever, the intervening routine could need access, to perform correctly its functions, to some specific
information that in general might not be available at that particular stage during execution. For
instance, a memory block can only be moved in the heap if the location of all the pointers that
refer to that block is known, so that those references can be updated when the block is relo-
cated. Increasing the availability of that kind of information, therefore, can be of great help while
designing a system that should offer those services preemptively.

In general, little literature exists about techniques able to support different kinds of service
routines in optimised native code and to obtain the necessary information for every machine in-
struction. Some work exists on garbage collection at every machine instruction, some work dis-
cusses the extraction of the necessary information when using compiled code, but no systematic
discussion is apparently available about supporting multiple service routines using preemption
and native optimised code. This thesis discusses the prerequisites of such a support, the technical
challenges and the techniques, some known, other newly developed in the context of this research,
which can be used to develop such a system. The development of a test implementation, showing
the usefulness of those techniques and ideas, is also described and the experimental results are
discussed.

'tis the advisor who suffers from bad advice.

— Anonymous

Acknowledgments

Many people have helped me throughout the development of this Ph.D. research. First and fore-
most | would like to thank my current supervisors, Prof. David Watt and Dr. Simon Gay, for
their advice, their insightful suggestions, and their infinite patience. | would also like to thank my
former supervisors, Prof. Malcolm Atkinson and Dr. Tony Printezis, for their encouragement,
support, and comments during the first phase of this research. Many other people contributed
ideas and personal knowledge towards the refinement of the technigues described in this thesis.

My internships in Sun Microsystems Laboratories proved invaluable, allowing me to obtain
a more complete view about the problems involved in garbage collection algorithms, and some
obscure details of SPARC microprocessors and system architectures in general. For making it
such a great experience | am grateful to Mario Wolczko and Greg Wright, who offered plenty
of help and precious comments. Ross Knippel, David Cox and Chuck Rasbold kindly took the
time to explain to me many details about the inner workings of the JBE Java compiler, which
eventually became part of Sun’s ExactVM.

Amer Diwan clarified some crucial details in the implementation of garbage collection maps
with an experimental customisation of Modula-3 on GCC, originally for the VAX, and patiently
dealt with my nagging requests for more information. Tony Hosking offered to retrieve a copy
of the source code of a subsequent adaptation of the same project to the RISC architecture.
Alex Garthwhite offered important information and bibliographical references about thread-local
heaps. Dianne Ellen Britton kindly retrieved a paper copy of her '75 Master thesis on automatic
heap management for the language Pascal and sent me a digitised version of her work. It is sur-
prising to discover how certain issues related to pointers handling and initialisation have changed
very little since then. Richard Hudson helpfully pointed out the difficulties of tracking pointers
while using write barriers. John Reppy spent quite some time explaining to me a great deal of
important details of the implementation of MOBY, pointing out useful additional references. Eliot
Moss shed some light on the inner workings of the Trellis/Owl system. David Ungar suggested
ways to improve the testing of the prototype, and gave me a whole new light in which to con-
sider this research. A whole new light on research in general, actually. Jim Stichnoth clarified
the handling of system code in their Java compiler system. Reinhard Wilhelm offered precious
references on static analysis techniques.

Acknowledgments iv

The development was conducted using a number of programming environments, including the
Linux operating system, Sun Microsystems Solaris, the Cygwin environment and the Simics sim-
ulation suite, a commercial tool generously made available for free by Virtutech to students and
academic institutions. The main body of research was developed using the GNU Compiler Collec-
tion, and debugged using GDB and Insight. Insight. All trademarks, product names and company
names or logos used in this thesis are the property of their respective owners. To the best of
the author’s knowledge, this thesis contains no material previously published or written by other
persons, except where due reference is made.

This work was made possible by a University of Glasgow Postgraduate Scholarship and by re-
search funds offered by Prof. Malcolm Atkinson, in the context of the grant arranged by Dr. Mick
Jordan of Sun Research Labs (Palo Alto) as part of the Sun collaborative research agreement to
investigate persistence for Java.

Faber est suae quisque fortunae.
— Appius Claudius Caecus , Roman orator

(Each man is the smith of his own fortune.)

The most merciful thing in the world. .. is the inability of
the hiuman mind to correlate all its contents.
— H. P. Lovecraft , 1890 - 1937

Contents

List of Figures Xiii
List of Tables Xiv

1 Introduction 1
1.1 Program SEerVICES v v v v v e e e 1
1.2 Machine instructions and preemption 2
1.3 Theissuesinvolved 4
1.3.1 Garbagecollection 4

1.3.2 Datapersistence e 5

1.3.3 Datamigration. 6

1.3.4 Thread persistence and migration, same architecture 7

1.3.5 Thread persistence and migration, heterogeneous architectures . . 8

14 SUMMArY 8

2 Focusing on the Problems 10
2.1 Requirements e e e e 10
2.2 Fromthe problemstothetechniques 10
23 Techniques. 12
2.3.1 Type tracking and data conversionintheheap. 13

2.3.2 Type tracking and data conversion forthe stack. 14
2.3.3 Type tracking and data conversion for registers and microprocessar stafe

2.4 Possibleproblems. 16

3 Implementation Techniques 18
3.1 Existingtechniques 18
3.2 Thecontext. e e 20
3.3 Atestenvironment. e 22
3.3.1 WhyGCC?. e 22

Contents vii
3.32 SPARCVB e 23

3.4 Typesandmodes e 23
341 Modes e 23
3.4.2 Splitpointers. 25

3.5 Moreelementstoconsider o 27
3.6 Unusualfeaturesofcompilers 28
3.7 Unusual features used in microprocessors v oo ... 29
3.7.1 Registerwindows 29
3.72 Delayslots. e 30

3.8 Trackingmodesinthestack 32
3.8.1 Stackcomponents 32
3.8.2 Problemsandsolutions. 33
3.8.2.1 Uninitialised pointers. 33

3.8.2.2 Arrays of uninitialised pointers 34

3.9 Trackingmodesintheheap., 34
3.10 Pointers and derived pointers. 35
4 Pointer Discovery in the Registers 36
4.1 Introduction. L 36
4.2 Localannotations 38
4.3 More details on reconstructing mode information 38
4.4 Prologueandepilogue. 40
5 Multi-mode Liveness Analysis and Consistency Checks 43
5.1 Introduction. e 43
5.2 Multi-mode livenessanalysis. o 45
5,21 Thecontext e 45
5.2.2 Formaldefinitions. 46
5.2.3 Dynamiccontrolflow a7
524 Expectedmode 49
5.25 Modecalculation 52
5.2.6 Themodealgorithm. 55
5.2.7 Terminationandcomplexity 56
5.2.8 Theeffectofcalls. 57

5.3 Sanitychecks. 58
5.3.1 Additionalchecks. 58
5.3.2 Implementation e 64

5.4 Delayslotselimination. 66
5.4.1 Amodelfordelayslots. 66
5.4.2 Conditionsondelayslots. 67
5.4.2.1 Delayslots as branchtargets. 68

5.4.2.2 Control Transfer Instructionsindelayslots 69

Contents viii

5.4.2.3 Lastinstructionintheroutinebody. 69

5.4.2.4 Possibleusesofdelayslots. 69

543 Afewexamples. e 70
5.4.3.1 Unconditionalbranch 70

5.4.3.2 Annulled, branchalways 71

5.4.3.3 Annulled, conditionalbranch 71

544 Delayedcalls 72
5.4.5 Combininginstructions. oo 73
5.4.6 Sanity checks for combined instructions 76
54.6.1 Validity 76

5.4.6.2 Sufficiency. 78

5.4.6.3 Consistency afefanduse 80

5.4.7 Delay slot elimination: transformed functions 81
5.4.7.1 Unconditional branch,delayed. 81

5.4.7.2 Unconditional branch, annulleddelay 82

5.4.7.3 Conditional branch, delayed 82

5.4.7.4 Conditional branch, annulled delay. 83

5.4.7.5 Callinstruction, delayed. 83

54.7.6 Othercases. i 84

5.4.8 The delay slot elimination algorithm. 85

6 Pointer Discovery in the Stack 89
6.1 Stackcomponents. 89
6.2 Returnaddresses e 90
6.3 Dynamicchain. e 91
6.4 Staticchain. e 92
6.5 Arguments L e e e e e 92
6.6 Returnvalue e 95
6.7 Automaticvariables 96
6.7.1 Framewvariants. 96
6.7.2 Liveness of variables or components with fixed offset. 98
6.7.3 Nestedsubroutines. 100
6.7.4 Referencepassing 101
6.7.5 Arrays. 102
6.7.6 Semi-dynamicvariables 103
6.7.7 Extracting layout information. 103

6.8 Blocks obtained fromdlloca()”o 105
6.9 Registerssavearea. e 105
6.10 Temporaryvalues i e e e 106
6.11 Objects e 107

6.12 Other informationonthestack. ..., 107

Contents iX

7 Pointer Discovery in the Heap 109
7.1 Pointerdiscovery. e e 109
7.1.1 Blocklayouts. 110
7.1.2 Allocation. 111
7.1.3 Initialisation 111
7.14 Codeintheheap 112

8 Runtime Module 113
8.1 Datastructures. 113
8.2 Structure of the runtimemodule 114
8.3 Extractingthecontext. 116
8.4 Pointerdiscovery. 117
8.4.1 Registersandregistersaveareas. 117
8.4.2 Stackandheap 121

8.5 Critical sections and foreigncode, 122
9 Implementation 125
9.1 GCCinbrief 125
9.1.1 GCC and the Register Transfer Language 126
9.1.2 Rulerewriting 128

9.2 Thecompilation proCcess i i i 130
9.3 Extracting the mode information 131
9.3.1 Partialintegers. 132
9.3.2 Customised expansions e 133

9.4 Pointerdiscoveryintheregisters. 135
9.4.1 Registersinthe SPARCABI. 135
9.4.2 Prologueandepilogue o e 137

9.5 Implementation of the livenessanalysis. 138
951 Anexample 138
9.5.2 Acustomcompressionscheme. 141

9.6 Discoveryinstackandheap L. 143
9.6.1 Pointerdiscoveryforthestack. 143
9.6.2 Heapimplementation. 144

9.7 Runtime module implementation. 145
9.7.1 Deferringthe serviceroutine. 146
9.7.2 Pointer discovery implementation. 150
9.7.2.1 Registers e 150

9.7.22 Registersaveareas e 152

9.7.2.3 Automatic variables and stack-based arguments. 153

9.7.24 Heap. e 154

9.7.3 Serviceroutine. e 154

9.8 Arraysand GCC. e 154

Contents X
9.9 Limitations/Future developments. 156
9.10 Testing e e e 157

9.10.1 Statictesting. 157
9.10.2 Dynamic testingand debugging. 158
9.11 Results e 159

10 Derived Pointers 162
10.1 Pointersand heapblocks. 162
10.2 Common sources of derivedvalues, 163
10.3 Dealing with derived pointers. o0 164

10.3.1 Derivationtables 164
10.3.2 Adifferentapproach L. 165
10.3.2.1 Arrayrepresentatian. 166
10.3.2.2 More general virtual origins. 166

11 Pointer Discovery as an Enabling Technology 169

11.1 Thread-local heaps: anintroduction. 169
11.1.1 Thread-localheaps. 170
11.1.2 Thesharedheap 170
11.1.3 Shareability by reachability. 0. 171
11.1.4 StaticanalySis. 171

11.2 Implementation alternatives. 172
11.2.1 Copyingvs.flagging 172
11.2.2 Segregatedheaps. 173

11.3 Pointer tracking: a practical solution. 173

12 Evaluation and Conclusions 175

A JBE and ExactVM 180

B Preallocation in Segregated Thread-local Heaps 182
B.1 Thecallchainasanindicator. 182
B.2 Dynamicprofiling. 183
B.3 Correlating allocation sites and shareability. 183
B.4 Percentage of objectsvs. categories. 0. 184
B.5 Correlationgraphs. e 185
B.6 Delaygraphs. 185
B.7 Traps & CoOpies. 187
B.8 Gatheringdata. 188

B.8.1 Withoutprediction. 188
B.8.2 Allocationsites. 188
B.8.3 Hashing predictor: simple but effective 189
B.8.4 Additional considerations. 190

Contents Xi

B.9 Someresults 190
B.10 Conclusions. 192
B.11 Furtherwork 192
B.12 Graphs e 194
C Examples 200
C.1 Pointerdiscoveryintheregisters., 200
C.2 Fullyoptimisedcode. e 203
C.3 Side-by-sidecomparison e 207
C.4 Tables frommultiplelanguages. 215
CAl Java. o i 215
C.42 Clanguage. o i 216
C.43 Cusingmostlypointers. 219
C.4.4 Ada. e 221
C.45 Pascal e 222
C.4.6 Cusingvarious expressions. v v v v i i e 224
CAT CHt. o 227

Bibliography 229

What 1 give form to in daylight is only
one per cent of what I have seen in darkness.
— M. C. Escher, 1898 - 1972

List of Figures

3.7.1 Registerwindows e 30
4.4.1 Local registersin prologue, body and epilogue. 41
5.2.1 Cumulative effectofcalls. oo oL 58
5.4.1 Delayslotusedasbranchtarget. 68
5.4.2 Unconditionalbranch 70
5.4.3 Conditional branch,annul., 71
54.4 Delayedcall 72
5.4.5 Equivalent representation foradelayedcall 73
6.9.1 Local registers in prologue, body and epilogue. 106
8.2.1 Structure of theruntimemodule L. 115
9.1.1 Stages of compilationina GCC compiler. 126
9.1.2 ExpansionruleinGCC 129
9.2.1 Compilation of one source file in the customised compiler 130
9.2.2 Generation of the final executable in the customised compiler. 131
9.5.1 Examplecode e 139
9.5.2 Use of registersinthe compiledcade. 140
9.5.3 Compressedtrackingmap 143
9.7.1 Stack containing mixed stackframes 147
9.11.1 Tables generatedforCand Adacode. 161
B.4.1 Distributiongraph 184
B.5.1 Correlation graph: Volano., 185
B.6.1 Delaygraph:Volano., 186
B.12.1 Benchmark: 213 (javac). e e e 195
B.12.2 Benchmark: 227 (mtrt) o 196

Xii

List of Figures

xiii
B.12.3 Benchmark: Volano server e e 197
B.12.4 Benchmark: Pretzel. e 198

B.12.5 Benchmark: Paraffins

Science may set limits to Knowledge, but

should not set limits to imagination.
— Bertrand Russell , 1872 - 1970

List of Tables

3.1

B.1
B.2
B.3

Loading a 32-bit constantin aregister. 25

Volano benchmarks, 412 threads. Objects always allocated in the private spate
Volano benchmarks, 412 threads. Predictor based on allocation.sites. . . 191
Volano benchmarks, 412 threads. Hashing predictor 191

Xiv

Summary XV

Chapter 1 gives a general introduction to the context of this work. After defining the term “program
services”, the chapter describes the way in which they can be used preemptively, and gives a general
overview of the issues involved.

Chapter 2 explains in greater detail the problems involved in supporting the preemptive use of program
services and explains how the main issue is tracking the types of data during execution. In many
cases, finding where the pointers are is sufficient. The various technical challenges are listed and
discussed.

Chapter 3 introduces some technigues that can be used to address the challenges described in the previ-
ous chapter. A more precise description of the working context is given, and the concept of “mode”
is introduced. Particular features of compilers and microprocessors that can introduce additional
complexity are discussed. The content of the following chapters is introduced and discussed in
general terms. The experimental prototype, described in Chapter 9, is also introduced.

Chapter 4 focuses in more detail on determining where the pointers are in the registers of the micropro-
cessors, while the code is running. The usefulness of a customised liveness analysis, described in
detail in the following chapter, is explained.

Chapter 5 is devoted to a formal discussion of the customised liveness algorithm, and the related verifi-
cation mechanisms that can be used to ensure the consistency of the information obtained from the
compiler. The implications of the use of delay slots are discussed, and the way in which the liveness
algorithm and the checks can be adapted is explained.

Chapter 6 analyses the mechanisms that can be used to discover where pointers are on the stack. The
various components of the stack frames are explored individually, and the particular technical prob-
lems involved are discussed for each of them.

Chapter 7 discusses the discovery of pointers in the heap. The facilities that should be made available
by the heap handler are discussed.

Chapter 8 contains a description of the operations that should be performed at runtime, when a program
service is requested preemptively. The dynamic aspect, described in this chapter, complements the
mostly static analysis described in the previous chapters.

Chapter 9 presents an experimental prototype that was used to highlight possible implementation diffi-
culties. The structure of the prototype, its implementation, and the results obtained are analysed.

Chapter 10 discusses the particular problems related to the use of “derived pointers”. Existing tech-
nigues and a new proposal to deal with them are presented.

Chapter 11 presents a real-life example of a problem in which the use of preemptive program services
could be beneficial. In particular, the techniques described in this work could be used to implement
thread-local heaps while using preemptive thread switching.

Chapter 12 contains a final summary, an evaluation of the technique, and a conclusion.

LooK with favour upon a bold beginning.
— Virgil , 70 BC - 19 BC

Chapter 1

Infroduction

1.1 Program services

On modern, complex computer systems it may be useful, or even necessary, to manipulate the
state of live, running threads and their data. For instance, if the program is long-lived, the ability
to perform dynamic reallocations of threads on different CPUs, or to different nodes in a net-
work, can allow for a considerably more efficient use of processing power and may be crucial in
preventing the system from exhausting the available resources. Similarly, the ability to save the
thread state, including the live data, at periodic intervals can be very useful in case of hardware
failures, power cuts, etc. in that the state can be subsequently resumed and restarted, therefore
preserving intermediate results previously computed up to the last commit point.

We will refer with the term “service” to any facility that temporarily suspends the normal pro-
gram execution to intervene on its memory, and more generally on its state, in order to improve
the normal program operation or to offer additional features. Garbage collection, persistence and
migration are some of the services that rely, for their correct operation, on the ability to access
the internal thread structures and data at certain moments during execution. However, not all the
implementations allow a service to operate at any given time. A garbage collector could require,
for instance, the collection to be performed only at specific moments during the execution of each
thread, requiring all the threads to reach a safe point before proceeding.

An analysis of some typical implementations will reveal a range of possible levels at which the
service can be implemented. If a fully interpreted virtual machine is used, for instance, the virtual
code will usually contain no indication of the occurrence of garbage collection, which will be
performed automatically by the virtual machine, instead. If a Just-In-Time compiler is used, the
services will typically be performed, instead, by calls inserted in the compiled code, in selected
garbage collection points, while the original source code does not contain any indication of the
operation taking place. Still another approach could be maintaining the operation explicit up to
the level of the user code, requiring the programmer to place explicit calls to the service routines
in the user program.

1 Infroduction 2

Each of the different levels offers a “transparency” of the service above a certain level of ab-
straction, while the underlying layers must deal explicitly with the service invocation. Each level
of abstraction is also related to a certain degree of granularity, which determines how often the
operation can take place, and the minimal interval, in terms of time or number of primitive in-
structions, that separates two possible occurrences of the service invocation. The minimum delay
between two operations also influences the latency, that is the time necessary for the system to
respond (invoking the service) when an event requesting the operation is received. For example,
if a power failure is detected and the state of the running thread must be saved to disk as soon as
possible, a low latency might be crucial for correct operation. If the guaranteed maximum latency
is too long, or does not have a known upper bound, the save operation can be delayed excessively,
and some of the system state can be lost. Having a guarantee about the maximum latency for a
specific service can be crucial in real-time applications.

1.2 Machine instructions and preemption

The smallest granularity in the frequency of service invocation that can be achieved on common
computer systems is that of the single machine instruction. If the required support for a certain
service can be offered preemptively, the program could be temporarily suspended at any machine
instruction and its internal state manipulated appropriately. An advantage of such an approach is
the absence of additional code that, using other techniques, is usually inserted to mark a possible
point of execution of the system routine (safe point, yield point and so on). The normal execution
can therefore proceed at full speed, and greater are the opportunity to perform code optimisations,
for instance using peephole optimisefsSU86, WG95, since the flow of instructions is not in-
terrupted by additional instructions or function cdll¬her advantage, compared to additional
instructions inserted in the normal code, is the simplification of the program logic, since the ser-
vice will operate transparently. The programmer does not need to write additional code, or to be
concerned with the details of the services in use. A third advantage, as mentioned, is the much
finer granularity and consequently the potential for lower latencies.

The technique appears to be quite appealing, but implementing the desired support is not
straightforward. The system must ensure proper operation for the necessary state manipulations
at any arbitrary point of the program, even if the program is in that moment engaged in com-
plex memory operations, system routines or other activities that could interfere with the correct
handling of the service. For instance, if the program is interrupted in the middle of a memory
allocation, the internal structures of the heap could be left in an inconsistent state while a garbage
collection is attempted§CM99. Similarly, input/output done using Direct Memory Access, us-
ing a block on the heap as the buffer, would cause data corruption if the block in question is
moved half way through the data transfer.

1safe points can also be implemented using different solutions, although such approaches are less common. For
instance, it is possible, when a request for a service is received, to replace on-the-fly some instructions in the normal
code with a special handleA§e9g. Conceivably a hardware breakpoint could also be used in a similar way. Certain
issues involved in the mechanism have some similarities with those related to preemptive services, as will become
apparent progressing in the discussion.

1 Infroduction 3

On the other hand, taking into account the noted exceptions, being able to perform an exact
garbage collection, a system checkpoint, or a thread migration at any assembler instruction would
mean being able to use fully optimised code, reducing to the minimum the latency required for
the activation of the service routine, and in general having a much finer control over the use of
system resources. For example, in multithreaded environments, if preemptive thread scheduling
is used, performing a “stop the world” exact garbage collection (GC) implies rolling forward each
of the running threads to their next point in the code in which GC can be safely performed, which
might involve a substantial delay. Being able to perform a garbage collection at any instruction,
for each thread, would reduce, in this case drastically, the necessary delay.

The literature on preemptive garbage collection, or other heap manipulations, is often vague,
extremely sparse, and the relevant projects are usually limited to a single programming language
and operating environment. This work, conversely, focuses on a more complete view of the
general problem, and on a detailed analysis of the challenges and techniques surrounding the
subject. An in-depth analysis of the many hidden implementation difficulties and of the technical
solutions involved, some of which are believed to be presented here for the first time, is also
included. A list of available literature, related to the topic, will be presented in Segtipbut it
is useful to introduce immediately a useful mechanism, often used in previous works.

A possible technique to implement garbage collection, or other services, in a preemptive way
is the use of maps, built statically, which associate values of the program counter (PC) to some
information for that point in the compiled code. Such maps are variously mentioned in literature
with the names “PC maps”, “trace tables”, “GC maps”, and similar terms. PC maps can be used
to describe information about the pointers contained in registers and/or in the stack at particular
points in the code. If the PC maps are defined over every instruction, they can be used to the effect
of making every instruction a potential safe point. In other words, the corresponding code could
be regarded as “safe code”, in which an interruption and the corresponding service can take place
at any time. In a sense, safe code is the counterbalance to critical sections, in which a service
routine must not interrupt the normal flow of code execution.

In general, there seems to be a lack in literature of a systematic study of techniques able to
offer a generic support for different services, in as wide a context as possible. The main apparent
obstacle to such an effort is the supposed excessive size of the tables needed to maintain enough
information, in correspondence to every assembler instruction, to implement the required support.
Such an argument, however, appears to be considerably less relevant today than it used to be in
the past, thanks to the considerable availability of memory on modern machines. While some lit-
erature is available with regard to garbage collection, it is extremely difficult to find any examples
of previous work on preemptive migration or checkpointing at any machine instruction.

Exploring the feasibility of checkpointing, garbage collection and migration at every assembler
instruction makes, consequently, for a remarkably interesting research topic, which could prove
useful to improve performance and flexibility of modern computing systems. In this work new
techniques suitable to implement such a generic support, and improvements on existing ones, will
be explored, and an implementation of some of those techniques will be shown. The discussion
will revolve around compiled languages, either statically or just-in-time, but the same mechanisms
could also be applied to interpreters, interrupting preemptively the code of the interpreter.

1 Infroduction 4

It should be noted that the kind of support needed would be similar for other forms of memory
manipulation or program state inspection, and the work can be therefore extended in other areas
as well. In particular, the additional information about the compiled code could also be used by
debuggers in order to present a more accurate representation of the running program. For exam-
ple, in conventional debuggers the relationship between the original source code and the resulting
assembler is often not clear, especially if the resulting code is heavily optimised. Stepping through
optimised code, therefore, it is often not possible to determine the effect of the individual instruc-
tions of the source program. At the same time, stepping through individual assembler instructions
is of little use, since there is not enough information useful for debugging available at that level.
In particular, it is not known, in conventional debuggers, how the individual machine registers
relate to the values manipulated in the source program at each assembler instruction. Being able
to associate more information with each assembler instruction, consequently, would allow the
programmer to step through the compiled code having more information about the manipulated
values, and having therefore a better picture of what is really done by the executed code.

The rest of this work will mainly focus on garbage collection, persistence, and migration. The
next section will review more closely the issues involved in offering each of the mentioned ser-
vices at each machine instruction.

1.3 The issues involved

1.3.1 Garbage collection

Garbage collection involves the automatic removal from the heap of some blocks of memory
that will no longer be used, thus freeing heap space for further allocations. In general, it is not
possible to determine whether an arbitrary block of memory will really be used again, since that
would imply some knowledge about the future behaviour of the running progh@vip8]. It

is however possible, in general, to determine that certain heap blocks can no longer be reached
by the running program. The unreachable blocks can then be safely disposed, and their memory
freed. If the garbage collector is able to identify the location of all the pointers used by the
program, the full set of unreachable memory blocks can be disposed. In that case the garbage
collector is usually said to be exact, or accurate, although its ability to reclaim unused memory is
lower than that of an ideal, fully precise collector. For an interesting comparison of exact versus
ideal garbage collectors, see Shaham et3g0Q.

If, conversely, it is not possible to discriminate whether some of the values used by the program
are pointers or simple scalar values, it is necessary to consider that those values “might” be point-
ers, adopting a conservative approach, and possibly not freeing all of the unreachable memory
[BW8S]. An exact garbage collector allows for a better management of system resources, since a
greater amount of available memory can be reclaimed during every collection. Also, knowing the
location of all the pointers allows the memory blocks to be relocated in the heap, using compaction
strategies to reduce heap fragmentation. For certain low-power devices, memory compaction can
also be used as a strategy to save battery power, since the memory banks not currently in use can

1 Infroduction 5

be switched off.

Another relevant aspect of a garbage collector is its support for preemptive operation. While a
non-preemptive approach usually relies on garbage collection safe points, or on maintenance rou-
tines invoked periodically by a virtual machine, implementing an exact garbage collector that can
execute at any point in the compiled code is usually more complex. Using selected garbage col-
lection safe points all the registers can be flushed to memory before calling the garbage collector,
and it is consequently enough to keep track of the pointers present in the heap and on the stack.
Conversely, if the program can be interrupted at any machine instruction, some of the pointers
might be temporarily cached in registers. Those registers are, by all effects, valid pointers to heap
objects, and must be taken into account while performing the collection. A similar problem exists
if safe points are used, but registers are not flushed to memory.

A conservative approach could consider all the registers as possibly containing pointers, but an
improved collection could be performed if it were possible to know exactly, for every value of
the program counter, which registers contain pointers and which just scalar values. Furthermore,
if the garbage collection requires the memory blocks in the heap to be moved, knowing which
registers contain pointers is essential, since their content may need to be properly adjusted. A
simplified approach could be to subdivide the set of user-accessible registers into two sets, one
of which is reserved for pointers. However, that solution would severely limit the ability of the
compiler to reuse registers while generating the code, and might lead to less efficient code. If fully
optimised code is desired, the only viable option is somehow determining the life of pointers in
registers throughout the code.

1.3.2 Data persistence

Making data persistent, so that it outlives the program that created it, means essentially saving a
copy of the data itself from memory onto some sort of storage support, in a format that allows a
subsequent retrieval and reuse. In the transparent forms of persistence, however, the programmer
does not have to worry about explicitly making the data persistent. The task is instead delegated to
the underlying system, which will perform the operation periodically, in a completely automated
manner. Such an approach is especially interesting when coupled with orthogonal persistence, in
which all data is treated in the same way regardless of type, and every memory object has equal
right to persistence. Implementing transparent orthogonal persistence means that the programmer
not only does not need to be concerned with the details of making the data persistent, but does not
even need to invoke explicitly any particular routine for the operation to be performed. All of the
persistence-related operations will be therefore entirely transparent to the programmer, who can
assume that every data structure created will be managed and saved in a completely automated
way.

If the level of granularity considered is that of the single machine instruction, the system should
be able to handle the transfer of data from memory to disk and vice versa without requiring any
additional embedded code, with respect to what would normally be generated by the compiler,
while still being able to manipulate memory as required. All of the required data transfer oper-
ations (eviction and transfer from memory to storage, and successive reload) must be therefore

1 Infroduction 6

transparent. A transparent loader on demand, controlled by the system using native hardware
facilities, can take care of moving objects from the persistent store to memory, converting as nec-
essary the internal object representation. Evicting objects from memory and converting them to
their persistent form can be done at any machine instruction if the set of all the pointers is com-
pletely known, so that all the references involved (both in the object being evicted and in objects
that refer to it) can be transformed into the corresponding persistent form.

While some implementations exist of the kind of transparent loader described (used, for in-
stance, by the Texas persistent store to implement pointer swizzling at page faul\ti9e]),
no examples appear to be available in literature of a checkpointing in which the set of all the
pointers in use is known at every instruction. The only solutions that implement a preemptive
checkpointing imply instead either a snapshot of the entire men88¥99, or non-relocatable
memory blocks, as used by Single Address Space Operating Systems (Sombrero, Mungi, Opal,
for instance $M98a Voc98 CLBHL93]). It should be noted that Single Address Space sys-
tems, tying permanently every object to a virtual address, may prevent an efficient re-clustering
of objects into pages, which could potentially also lead to a less efficient use of the processor
cache.

Once again, as in the case of garbage collection, the crucial point appears to be the availability of
full pointer information for every machine instruction, including the contents of registers, so that
the memory objects can be treated not just as byte sequences, but as more abstract and structured
entities.

1.3.3 Data migration

The case of data migrations is very closely related to that of data persistence, in that both tech-
niques require enough knowledge about the memory objects to be able to move them freely in and
out of the physical memory while maintaining the objects’ identities unaltered, and the program
logic unchanged. Knowing the location of the pointers in memory is sufficient to move or copy
the objects to another machine, at possibly different addresses, while still preserving the logical
interconnection between them dictated by the original pointers. Typically, if the hardware archi-
tectures of the two machines exchanging the data are the same, no other conversion is necessary,
and the requisites are therefore not different from the case of data persistence.

However, the matter is slightly more complicated if the two machines involved in the migration
are based on microprocessors belonging to different families. In that case the original, native for-
mat of the transferred object could not correspond to the native format on the destination machine.
The most obvious problem is endianness. If the source machine is big-endian and the target one
is little-endian, for example, the format of all multi-byte values will need to be rearranged to con-
form to the new native format (in the hypothesis that both machines use native, optimised code
to manipulate data objects). Another aspect that needs to be taken into account is memory align-
ment, and the possible location of padding values. Not all machines can or are equally efficient in
accessing long values aligned to different memory boundaries, and the Application Binary Inter-
faces of each suggests, usually, standard ways to align data, sometimes in mutually incompatible
ways across microprocessor families. Therefore, the internal structure of the data object will need

1 Infroduction 7

to be opportunely rearranged, and the complete internal structure of the transferred object needs
to be known, including the location of all the pointers and the precise length and type of every
component. The exact details of the conversion, when and where it is performed, will then de-
pend on the specific implementation choices, and a variety of possible solutions can be adopted
(for instance converting to a neutral format, or sending as-is and converting on the destination
machine, or converting in the target format before sending, and so on).

The crucial point, however, is that the data object must be considered, during the migration, as
having a defined and known structure so that it can be treated at a more abstract level, in a manner
that is independent of the specific architectures involved. It is describing the abstract format
of the object in terms of the common features among the different architectures that enables us
to perform the necessary conversions. Very similar considerations will be repeated, in a more
articulated way, for the case of heterogeneous thread migration, in Séién

1.3.4 Thread persistence and migration, same architecture

Making a thread persist, or migrate, implies extracting its state and converting it into a format
such that a subsequent resumption, on the same or a different machine, is possible. A proper
resumption of the thread is usually only possible if the thread still has access to the local envi-
ronment, including all the accessible heap objects, which were present at the moment of the state
extraction. Accordingly, making a thread persistent or migrating it on another machine implies
obtaining from the system enough information (program counter, stack, heap objects and so on)
to restore the running program at a later stage.

As described for the previous techniques, there are several levels of abstraction, and related
degrees of granularity, that can be used. For instance, if a virtual machine is used, the virtual
program counter, the virtual machine stack and some additional state will usually be the compo-
nents, together with the reachable parts of the heap, of the needed state. If the desired degree
of granularity, on the other hand, is that of the single machine instruction (which brings all the
advantages previously discussed), the necessary thread state will be typically composed by the
microprocessor internal state, the stack used by the thread and the state of the heap.

As previously described for data migration and persistence, considering those elements from a
more abstract point of view allows for a more flexible manipulation. Moving the state from one
machine to another (as in checkpoint/restore, or migration) is however possible only if enough
information for a meaningful conversion is available. In the case of a Single Address Space
system, the source and the destination have the same structure, and no conversion is required. The
obvious drawback is that no object can be relocated in memory, which means that compaction is
not an option. If source and destination have the same hardware structure, but memory blocks
need to be moved, the more convenient abstraction could be considering the pointers as abstract
entities, while the remaining data is left unchanged. As previously detailed, knowing the set of all
the pointers in use (in the heap, in the microprocessor registers, on the stack) for every value of
the program counter is enough to perform all the required manipulations. Consequently, the kind
of support previously considered for data persistence, garbage collection, and data migration is,
in principle, enough to enable thread migration and persistence if a single architecture is used. On

1 Infroduction 8

the destination machine, the state will be adapted modifying the pointers as necessary, be they in
the heap, on the stack or in system registers, after which the thread can resume.

Some difficulties may arise, however, if the mentioned support is not system wide, and part of
the system does not conform to the abstraction required. In that case, part of the meaningful state
of the running thread could be external to the program domain, and preserved in system structures
(open files, network sockets etc.) The problem can be alleviated by keeping a cached copy of the
system state in local structures, which can be saved with the rest of the state. In an ideal case, the
best solution would be to have the mentioned support for persistence and migration extended to
the entire system, so that the full thread state can be manipulated at any moment.

1.3.5 Thread persistence and migration, heterogeneous architectures

If the source and the destination machines use microprocessors that belong to different families, a
much more sophisticated approach must be adopted. The common elements between the two (or
more) architectures, in this case, will be fewer. A conversion of data structures, as mentioned in
the section on data migration, will be necessary. Additionally, the stack and the microprocessor
registers contents will have to be transformed from one machine to another, possibly completely
different, allowing the thread to resume seamlessly, which is definitely not a trivial task. To
overcome the difficulties, most of the systems which allow thread migration in heterogeneous
environments adopt a higher level of abstraction, for instance moving the state of a virtual ma-
chine, or restricting the opportunities for checkpointing/migration to selected points. The latter
approach reduces the granularity with which the operation can be performed, and does not offer
all the advantages of full preemption, explained in Sectign

The ideal approach would be to have the ability of freezing a thread preemptively at an arbitrary
point in the native, fully optimised compiled code, while still being able to obtain enough infor-
mation about the state in that point of the code to allow for a conversion of the state in a format
suitable for another machine with a different microprocessor. There seems to be, at the moment,
no literature at all on techniques that could allow such a transformation to occur arbitrarily, for
any given value of the program counter.

The key, as can be inferred by the previous discussion, can be the use of the common elements
between the programs compiled for the two different architectures, so that a common format
can be found. In particular, producing the code for two machines from the same source code
by means of a compiler involves the use of a common representation of the program within the
compiler itself. Such an intermediate representation could be an interesting candidate for the kind
of transformations required.

1.4 Summary

e What is needed to support services at any machine instruction:

An improved support for garbage collection, persistence and migration at every machine
instruction on a single architecture can be obtained if it is possible to generate enough

1 Infroduction 9

information to associate every value of the program counter with the set of all the pointers
used at that point. The pointers can be contained in the heap itself, in the stack or in the
microprocessor registers (the global data area can always be considered as a special kind of
activation frame, or possibly as a special heap block). That kind of support can be combined
with a transparent loader, guided by the memory management unit, to make the memory
manipulations entirely transparent to the user program.

Support for heterogeneous migration can be added if a proper abstract representation can
be found for data objects and the thread state, together with a convenient way to convert the
native formats of the various architectures in one another, even when the state is extracted
at an arbitrary point in the code.

¢ What has been done in literature:

Generating tables containing the required information (the location of all the pointers) for
every value of the program counter could have been regarded in the past as impracticable
due to the memory requirements. Thanks to the capabilities of modern computer systems,
the technique appears nowadays considerably more appealing. Some work has been done to
support garbage collection at every machine instruction in the context of specific systems,
but no literature is available on generic support for multiple services, usable in a preemptive
fashion. Hardware-supported loaders are conversely commonly deployed in virtual mem-
ory subsystems, persistent systems, etc., and their use is essentially orthogonal to pointer
tracking, therefore the two problems can be treated independently.

e The purpose of this work:

— Studying in more detail, and in a more comprehensive light, the techniques that can
be used to generate automatically the data structures necessary to offer the described
support.

— Defining a more integrated approach, so to offer GC, persistence and migration at
every machine instruction in a simple and consistent way.

— Collecting the sparse knowledge on the subject, adding original contributions. Evalu-
ating the complexity of the approach and its usefulness.

— Offering an insight into the concrete implementation challenges of a complete system,
describing the working steps, the required techniques, and the hidden problems, also
thanks to the development of a concrete prototype, which will be used to expose
subtle, but important, details not usually documented.

The remainder of this thesis will be devoted to achieving these goals.

#define QUESTION ((2b) || (12b))
/* Shakespeare */

Chapter 2

Focusing on the Problems

2.1 Requirements

As the previous discussion shows, offering the desired support for garbage collection, persistence
and migration (data and threads) at every machine instruction, in a completely transparent way,
involves the following:

e being able to track the pointers (in the heap, in the stack, and in the microprocessor regis-
ters), so that every heap block can be relocated or evicted from memory at every point in
the code while the references to that block are correctly updated,

e implementing a transparent loader, so that an attempt to access a portion of memory previ-
ously evicted can result in an automatic reload,

e devising a way to convert the extracted microprocessor state, the stack, and the relevant
portions of the heap in different formats, suitable for use with a persistent store or for mi-
gration. The conversion can be particularly complex if the machines involved use different
MICroprocessors.

It is now time to determine more precisely which technigues can be used to fulfill those require-
ments, and which unsolved problems remain, requiring therefore the introduction of new tech-
niques.

2.2 From the problems to the techniques

A transparent loader can be implemented in a rather straightforward way using the Memory Man-
agement Unit to trap memory accesses to certain areas of the address space. When accesses to
those areas are detected, an exception can be raised, giving control to the loader. The loader

10

2 Focusing on the Problems 11

can then load the necessary pieces of data and adjust the memory configuration as needed before
returning the control to the thread which was previously running. Examples of such loaders are
available in every virtual memory subsystem, and the techniques are well understood, so they will
not be further discussed here. It should be noted, however, that the ability to find all the point-
ers can significantly enhance the capabilities of a conventional loader, allowing memory blocks
smaller than a single page to be easily loaded and evicted individually, if needed, or re-clustered
into memory pages depending on dynamic usage patterns.

The techniques used to convert memory blocks into a persistent form and vice versa are sim-
ilarly well known, although not generally used in conjunction with the level of granularity con-
sidered here, and numerous systems offer solutions for orthogonal persistence, in various forms.
The format conversion, as long as a single hardware platform is involved, consists essentially
of the replacement of pointers to memory blocks with more abstract Persistent Identifiers. The
association between the two representations is then preserved into a central repository, usually
referred to as Resident Object Table (ROT). More details can be obtained from the very rich lit-
erature that exists on the topic, related to persistent object stores, persistent systems, and so on
[ABC*83, AM95, HC99h DRH"92, SSF99 Kak9§.

On the other hand, as previously mentioned, very little research exists on finding pointers (and
more generally determining data types) in compiled and optimised code at every machine in-
struction. No working solution seems to be available for the migration of threads between het-
erogeneous architectures using native code, using on-the-fly transformations on the relevant data
structures. The latter problem is essentially equivalent to make data and thread state persistent
on one system and restoring the saved information on another machine with different hardware
architecture.

While data conversion can be accomplished by adapting the internal representation of data con-
tained in the heap into the desired native format of the destination machine, which is not terribly
difficult to do as long as the structure (type and size of every component) of each migrated mem-
ory block is known, converting in a suitable way the stack content and, more crucially, the internal
state of the microprocessor, is considerably more difficult. While an object allocated in the heap
does not usually change its structure during its lifetime, types and contents of data contained in
stack and registers can change much more often, possibly at every machine instruction. The state
of the microprocessor, additionally, may not have a direct equivalent on the target machine.

Summarising, the most crucial issues to solve, in order to complete the required support at every
machine instruction, are type tracking and state conversion, each of the two for heap objects, stack
contents and machine registers. To organise the following discussion, it can be useful to consider
again the differences that exist between performing operations in the context of a single architec-
ture and using instead a heterogeneous environment. Each of the two cases requires a different
level of abstraction and a different abstract representation, suitable for the kind of conversions
that are needed.

If a single architecture is involved, the data and thread manipulations involved preserve the for-
mat of all the scalar values used, requiring only the pointers to be converted or adjusted, following
object eviction, loading or relocation. There is no need to change the stack layout, and only the
pointers, among the values held in stack or registers, may need to be changed. In other terms, the

2 Focusing on the Problems 12

abstract format required only needs to represent in an abstract form what may change between
the different contexts. Tracking the type of the data in use will therefore consist in tracking the
pointers. Since no conversion is performed on scalar values, no detailed information about their
representation is ever required. Similarly, the necessary conversions will only involve changing
the pointers into persistent identifiers and vice versa, or adjusting pointers, but no other transfor-
mation on the remaining data will ever occur. Also, the code executed will remain unchanged,
unless absolute cross-references to code locations (absolute jumps, for instance) are used.

Conversely, if multiple architectures are involved, the abstract format used will have to rely
on the common characteristics of the different machines. Generally speaking, nearly all of the
microprocessors currently on the market have broadly similar structure and behaviour, and one
may safely assume that all of them have a natural representation for 8-bit, 16-bit, 32-bit, 64-
bit (and wider) integers, IEEE754 floating points and pointers. An abstract representation for
the data will therefore describe in abstract terms the content of the memory block using those
elementary types, and possibly a few others. Converting the microprocessor state is, however,
not that easy. No direct correspondence, in general, exists between a certain configuration of the
internal registers of a certain microprocessor and another configuration valid for another machine.
The machine-level code executed, in the two cases, is different, and the program counter, valid in
one case, may reflect a position, in the code, that results from the effect of code optimisers, and
has no direct correspondence in the code available for the second architecture.

A more detailed discussion about the possible techniques that can be used to implement type
tracking and state conversion at every machine instruction for heap blocks, stack contents and
machine registers will follow.

2.3 Techniques

There are different techniques that can be used in order to track types as required, depending
on whether a more static or more dynamic approach is adopted. In a purely static approach, the
compiled, native code is left completely unchanged, and the type information is obtained, when
necessary, exclusively by looking at tables or data structures created statically during compilation.
A dynamic approach, instead, will discover all, or part, of the needed type information while the
program is running, actively monitoring, for instance, the call chain, memory accesses, or other
runtime behaviours of the program.

The obvious advantage of an entirely static type discovery is the absence of additional code to
be executed, and consequent overhead, at the expense of a greater memory occupation due to the
size of all the data structures that need to be prepared in advance. In particular, as previously
mentioned, maintaining static type information about all of the program data for every machine
instruction can be quite onerous in terms of space occupation. On the other hand, a dynamic
analysis is potentially able to obtain much more information about the running code, and would
therefore be the only viable solution in certain cases.

As previously mentioned, space occupation is nowadays much less of a concern than it used to
be, while using fully optimised code, without runtime overhead, would enable a greater system

2 Focusing on the Problems 13

efficiency in many respects. Consequently, the analysis presented in this thesis will concentrate
on techniques that rely, whenever possible, exclusively on data structures that can be generated
statically, using information that can be obtained from the compiler, and that do not require the
generated code to be changed or de-optimised in any way. As we shall see, an entirely static
approach can actually be used in a surprising variety of cases, covering practically all the needs of
usual program code. That paves the way for an implementation of a compiler toolkit in which the
code produced is unchanged with respect to the code generated by a plain compiler, and still all of
the mentioned services (garbage collection, persistence, migration, etc.) are made transparently
available as desired.

It is worth mentioning that all of the issues described here in the case of heterogeneous environ-
ments (persistence and migration) refer to executable code obtained automatically for the different
platforms from a common high-level representation, for instance the same source code or virtual
machine code. Issues like code evolution, or binary translation, will therefore not be treated here
directly, although many of the techniques described in this work are certainly relevant, and could
be useful in those contexts as well. As far as the actual distribution of the multiple executables
on the different machines is concerned, there are several different alternatives that can be adopted
(fat or slim binariesfFK97], Just In Time compilation using virtual cod&fm98, SOT"0(], etc.),
but in general the problem is orthogonal to state capture and migration and can be treated inde-
pendently, hence it will not be further investigated here. In the remainder of the text, it will be
assumed that the thread data that may need to be inspected or manipulated by the service routine
is contained in the heap, the stack, and the registers. The global data area can be considered func-
tionally equivalent to a permanent first frame in the stack and, unless explicitly noted, it will be
treated accordingly.

2.3.1 Type tracking and data conversion in the heap

Since the system has to keep track of all the memory allocations in the heap, and of the type of
every data item present, the most obvious solution is the use of a customised memory manager,
which is actually part of the support infrastructure for the various services. In addition to handling
the various requests for memory blocks, like any heap manager, the customised memory manager
will have to offer facilities to track the types of the data contained in the heap, so that the modules
implementing the different services can inspect and alter, if needed, the heap contents relying on
that information.

In most high-level languages, the type of every memory block allocated in the heap is known at
the moment of its allocation, with a few exceptions that will be extensively discussed later, and ev-
ery component of an aggregated structure has a well-defined and fixed type for the entire lifetime
of the structure. Maintaining the necessary type information is therefore straightforward if the
memory manager requires every allocation to be performed specifying, via a descriptor of some
sort, the exact type structure of the memory object being allocated. It is usually possible to decide
the content of such a descriptor in an entirely static way for all statically typed languages. In dy-
namically typed languages, even if variables can change their type during execution, each value
has a fixed type, known dynamically, according to which the data manipulations are performed.

2 Focusing on the Problems 14

When a memory allocation is requested, therefore, the type structure of the newly allocated block
is known and a suitable descriptor can be obtained.

Recalling the distinction between the two cases, homogeneous vs. heterogeneous environments,
the needed descriptors will include information about the location of pointers in the structure
being allocated, or, respectively, the complete layout of all the types of the components used,
possibly including additional information concerning paddinome problems may arise when
the types of the components of the memory blocks allocated in the heap change during execution,
as it may happen when untagged C unions are used. In that case a group of memory locations can
be interpreted in multiple ways, depending on the particular instant during the execution and on
the program logic. The problem will be discussed in Sec#igh

Knowing the type of every memory object present in the heap, performing a conversion in a
format suitable for persistent storage, or for use on a different architecture, is relatively straight-
forward. In the first case it suffices to replace the pointers with persistent identifiers, or vice-versa.
In the second case, the natural representation in one of the architectures (endianness, padding,
etc.) can be easily converted in another representation suitable for a different environment, since
there is in any case a simple mapping between the two representations.

2.3.2 Type tracking and data conversion for the stack

The stack contains, during the normal program execution, several data areas juxtaposed, which all
grow and shrink according to the way in which the control flow enters and exits the different sub-
routines. In order to convert the entire stack content when a migration on a different architecture
is required, all those different areas should be tracked and converted appropriately. It is therefore
useful to analyse the main structures situated on the stack, according to their use.

The most obvious use of the stack is the allocation of the blocks of local variables used in each
procedure. Tracking those structures is relatively easy, since the contents of the frame allocated,
at least for statically typed languages, are determined by the compiler using a static analysis of
the original source code. On the other hand, the local variable area may be used in different
ways depending on the position in the code (some memory locations might be shared among
multiple local variables), in which case additional descriptors will be needed to keep track of the
situation. Similarly, the temporary values area, used while calculating expressions, is maintained
on the stack and might change in content and size multiple times during the execution of a single
routine, therefore a special analysis, exploring the situation instruction by instruction, is required.

Other critical areas on the stack that need special handling are the register save area, the area
reserved for the return value (if present), and the return address. The specific details about suitable
techniques to use in order to track the different areas of the stack will be discussed in Ghapter
As we will see, it is not excessively difficult to devise strategies in order to achieve the intended
result.

1Since padding is used in a way that is defined by the specific Application Binary Interface in use, the heap manager
should actually be able to reconstruct the padding information and the complete physical layout of every structure
allocated just by looking at the sequence of the types of the various structure fields. That would clearly require perfect
agreement between the padding algorithm as implemented by the heap manager and the compiler, but it is in principle
possible.

2 Focusing on the Problems 15

2.3.3 Type tracking and data conversion for registers and micropro-
cessor state

Keeping track of the values contained in the registers, and their types, is quite a difficult task.
During the execution of optimised native code the registers can be used to perform a number
of different operations. For instance, the same register could be used in different moments to
perform arithmetic computations, as a temporary cache for pointers, or to calculate addresses.
In most architectures many registers are general purpose, and can be used indifferently for both
scalars and pointers. Since the specific use of each register depends on the exact machine code
that is being executed, and can vary from one instruction to the next, keeping tracks of the exact
situation is rather complex.

A possible solution, that could allow the system to track the types of the values contained in the
registers, is the creation, alongside the executable code, of data structures that map each value of
the program counter to a description of the types of the data contained in registers at that point (the
“PC maps” mentioned in Sectidh?2). If the code is generated automatically by a compiler, the
information necessary to build the above mentioned structures is already contained in the compiler
structures while the compilation proceeds. Modifying in a suitable way an existing compiler, or
designing a new compiler appropriately, it is therefore possible to generate the necessary tables in
an automatic way. An extensive discussion about how this result can be obtained, the problems
involved, and the technical solutions, will be one the main components of the following chapters.

The data conversion can be performed in a straightforward way if the only kind of transforma-
tion required involves modifying pointers, or substituting them with a more abstract representation
as a persistent identifier. That is the only significant issue if a single microprocessor architecture
is involved. However, if a heterogeneous environment is required, the content of the registers
cannot be simply transferred. Different architectures can have different registers and the program
counter may refer to code that was optimised using different techniques, leading to operations
executed in different orders, and calculating different intermediate values. More generally, the
internal state of the microprocessor is highly dependent on the specific characteristics of each
architecture. Transforming the microprocessor state into a form suitable for another architecture
is quite complex, and would involve applying a non-trivial mapping between each value of the
program counter and the registers’ content on one architecture and a different value of the pro-
gram counter and a different registers’ content on a target architecture, so that the computation
can resume properly.

While the contents of heap and stack can be transformed into the corresponding format of a
different architecture, the resulting data could be unusable to restart a proper computation. For
instance, as a result of different code optimisations, certain operations on data contained in the
stack or the heap could be executed in a different order, and an intermediate state of the memory,
if simply translated and transported, could be inconsistent with the operations performed by the
code on the target machine. While many of the techniques presented later could be used or adapted
to the case of heterogeneous migration, the context assumed for most of the later discussion will
be the use of a homogeneous environment.

2 Focusing on the Problems 16

2.4 Possible problems

Some problems might arise in those languages in which the type of some components of an object
can change during its lifetime, for instance using records with variants in Pascal, or C unions. In
that case some memory locations can contain values of different types depending on the dynamic
behaviour of the program, and sometimes it might be simply impossible to determine the current
types without actively tracking every memory access to those locations. It follows that either
the code or the memory representation of those structures may have to be changed if unions are
to be supported. Tracking dynamically the memory accesses would be rather expensive, and a
more convenient solution might be reshuffling the memory representation of those unions so that
there is never any ambiguity in determining the type of every datum contained in any memory
location. Depending on the intended use of the type information, heterogeneous migration vs.
homogeneous migration, that would mean respectively to allow only fields with identical type
to share the same locations in memory, or, if a single architecture is involved, not to let fields
containing pointers and scalars to overlap with one another, so that pointers and scalars are kept
physically segregated in the memory representation of the union reBar8q. The obvious
downside would be that the offsets of the various members inside the structure can change, which
might cause problems if the programmer is allowed to use those implementation-specific aspects
to control member aliasing, for instance. Another possible issue is the interoperability with pre-
existing data files, containing unions that using the standard layout.

Similar problems can arise in those languages that allow a rather liberal type conversion be-
tween scalars and pointers to take place, or allow union types to be used for the same purpose,
bypassing the type system, often relying on non-standard or non-portable compiler behaviour. In
those cases, values that appear to the compiler as ordinary integers might actually be pointers, but
their being outside the system control would then prevent the correct transformations from taking
place. The only viable alternative, in those cases, is to insist that such cast conversions (from
pointers to integers and vice versa) can never be used in user programs, or alternatively that every
direct manipulation of the value of pointers is performed using system utilities, so that the nec-
essary information is preserved. It is worth noting that forbidding that kind of conversions is not
actually such a drastic restriction, in typical user programs, and that many modern programming
languages, most notably Java, hide completely the implementation of pointers as numeric entities,
identifying direct pointer manipulations as a source of considerable programming and debugging
problems.

Another detail that might be encountered while attempting to perform a data conversion is the
use, sometimes made by compilers or languages, of packed data structures in which integers,
bit fields, and other data types, are not kept aligned on a whole byte boundary but are instead
on an arbitrary bit boundary. Despite the added complication, performing the conversion is not,
in this case, significantly more difficult from a conceptual point of view. It will suffice to keep
track of types to the bit boundary, instead of to the byte boundary, in order to have again all
of the information needed to correctly perform the necessary unpacking and conversion of the
relevant data. For instance, knowing that there is an integer 21 bit wide, in little-endian format,
beginning from bit 3 at a certain byte offset in the heap is enough to extract its value and change

2 Focusing on the Problems 17

its representation into a different format, suitable for a different use.

Another relevant problem is the interaction with the host system. The assumption made until
now is that the entire information needed to describe the state of a thread can be found in the
heap, on the stack and in the microprocessor registers. This is not always the case, though, if
the support for migration, persistence and GC is built on top of a pre-existing operating system
that preserves some state in its own data structures. In that case, the state stored in the operating
system’s internal structures would not be under the control of the customised memory subsystem.
It would be therefore impossible to trace their content as necessary, and to extract such state when
needed. For example, files and network sockets in use are managed by the host system in a manner
that is not necessarily known to the user program. Unfortunately, there is not much that can be
done to solve the problem easily. If the host operating system is not designed to allow an accurate
inspection of its internal state, there is no easy way to extract the necessary detailed information,
which is simply not maintained. A possible workaround could be in that case the implementation
of a local cache, under the control of the custom memory handler, for all of the information that
must be available on the destination system, for instance in order to reopen the files, recreate the
sockets, redraw the screen, and so on.

Finally, keeping track of pointers is easier if the only pointers considered are those pointing to
the base location of blocks of memory contained on the heap. If a pointer refers logically to a
certain block, but points to a location that is displaced from the base location by a certain offset,
maintaining the association between pointer and block of memory can be more difficult. More
details on this aspect will be given in Chapl€) devoted to derived pointers.

Though this be madness, yet there is method in 't.
— William Shakespeare (1564 - 1616) , “Hamlet” act 2 scene 2

Chapter 3

Implementation Techniques

We have seen so far what must be implemented in order to offer a system capable of support-
ing services like garbage collection, persistence, migration, etc. to operate preemptively, at every
machine instruction, without requiring additional instructions to be inserted in the optimised com-
piled code. We have discussed why the most crucial requirement is the ability to track types and
to perform data conversions for all of the information contained in machine registers, heap, and
stack. Subsequently, we have analysed the challenges involved in creating an implementation of
the mentioned support.

This chapter introduces some technigues that can be used to address the challenges previously
described. A more precise description of the working context is given, and the concept of “mode”
is introduced. Particular features of compilers and microprocessors that can introduce additional
complexity are discussed. The content of the following chapters is introduced and discussed in
general terms. The experimental prototype, described in Ch@ptealso introduced.

3.1 Existing techniques

One of the earliest projects in which support for preemptive garbage collection was offered is the
Trellis/Owl system, as described in 1987 in a paper by Moss and KoMikBY]. According
to Eliot Moss, the compiler used by that system was not fully optimising, and there might have
been some earlier compilers for Al languages (LISP, etc.) that used similar techniques. Much
more recently, the Java compiler developed at Intel, described by Stichnoth, Lueh and Cierniak
[SLC99, and the MOBY system, by Fisher and Repp¥RDJ, are both able to support garbage
collection at every assembler instruction on the IA32 system. A port of MOBY to the PowerPC
is reported to be currently in progress.

The aforementioned Java compiler, described by Stichnoth et al., was designed with the built-in
ability to create PC maps, for every instruction, during compilation. Their maps are constructed,
relying on the almost complete type-safety of Java, to discover which stack locations and registers

18

3 Implementation Techniques 19

contain pointers at any given instruction. The only exception to type-safety in the Java bytecode
(deriving from the “finally” clause, see AgesedD97]) is treated specially.

Other compilation frameworks, in general, have no native ability to generate PC maps, and
adapting an existing compiler is usually far from easy. Bernard, Harper andBt¢e9B], in
their work on TIL, report that “Pseudo registers in MLRISC [...] carry no trace values or type
information; there are distinct classes of integers [...] but an integer pseudo register that happens
to be used as a heap pointer is not distinguished in any way.” Their PC maps (for selected points
in the code) were built by reconstructing the mapping from final registers and stack locations to
the pseudo registers used in the intermediate representation.

The authors of MOBY have used a mapping similar to the one used in TIL to map the abstract
representation of registers back to the variables used in the intermediate representation. While
PC maps are created for every machine instruction, MOBY does not actually obtain fully accu-
rate pointer information, and relies instead on a mostly-copying garbage collector. Reportedly,
MLRISC has added a better support for associating information with registers in recent revisions.

Another example of similar techniques is offered in the context of a Modula-3 compiler, based
on GCC, which was adapted by Diwan et aDMH92] to support garbage collection using
PC maps. The optimising compiler GCC 2.0 was modified so that PC maps are produced to
help the garbage collector in finding and updating all the pointers in the stack and in registers.
A set of tables was produced for each point in the code in which garbage collection is possible,
but not for every machine instruction. The code was generated for the VAX architecture using
Ultrix. Diwan stated that the modifications to GCC were both in the back end and in the language
front-end, which was customized to pass additional information to the back end. Notably, the
system offered support to pointers that might not refer to the base location of a memory block
(see Chaptet0). By comparison, the aforementioned Java compiler described by Stichnoth et
al. avoids all optimisations that generate derived pointers. A paper by Shivers 8&CGWM9H
describes an interesting approach to atomic allocations, and the interconnections between garbage
collection, interlocking, atomicity, and preemption, in the context of a customised implementation
of SML/NJ.

During my internship in Sun Microsystems Laboratories, | also had the opportunity to discuss
in detail with Ross Knippel, David Cox and Chuck Rasbold the design of the JBE Java compiler.
Derived from the UBE (Universal Back End) compiler, JBE builds GC-maps to determine the
location of pointers in registers and stack at specific points in the code although, according to their
description, the map generation could have been done, in principle, for every machine instruction.
Unfortunately, the compiler was developed strictly as a production tool, and no publications were
made available about the project. However, a summary of the system details relevant to the present
research is reported in Appendi JBE eventually became the optimising compiler included in
Sun’s ExactVM, together with the basic Java interpreter and a simplified JIT compiler. Sun’s
ExactVM is also known as EVM, as ResearchVM, and as JDK 1.2 Solaris Production Release.

Leaving aside garbage collection, there seem to be no examples of systems in which migration
or checkpointing of individual threads can take place at arbitrary machine instructions, with the
ability to move memory blocks. There are, however, systems in which the state of the whole
system is saved preemptivel@$F99, or single threads are migrated preemptively, but without

3 Implementation Techniques 20

allowing any structure to change address in memaiRd9 ABN99]. The explicit recording of

all the pointers that would need to be updated, with the obvious penalties in terms of performance,
has also been suggest€&eHM97] as a (crude) way to enable the movement of memory blocks in
the heap while operating preemptively.

The compression of PC maps, or similar structures, has been discussed separately by Diwan
[DMH92], Tarditi [Tar0d, and Stichnoth$LC99. Those works show how the necessary tables
can be compressed, in many cases, quite efficiently, which further reduces the concerns about the
space occupation of the maps used to implement preemptive services. A useful paper by Boehm
and Chase makes important considerations on the effect of code optimisation on derived pointers
[BCOZ.

The listed references show how PC maps can be obtained from the knowledge that the compiler
has about the location of pointers. However, these all refer to very specific environments, lan-
guages and target architectures. When a generic infrastructure has been used, the changes applied
to generate PC maps were not limited to the back end, making it difficult to adapt the system to
different high-level languages. In the available literature, the main emphasis has been on preemp-
tive garbage collection, but no consideration has been given to the wider range of applications
that would be available using that approach. The system JRR99 JR9§ defines a portable
back end and a runtime system, and defines an interface that can be used to supports multiple pro-
gram services. The separation used by that system between runtime core and runtime services,
and the definition of a clear interface between them, is similar to the approach suggested in this
work. Threads irc-- can only be suspended at a safe point, however, so there is no support for
preemptive services.

The following discussion will try to adopt a neutral approach with respect to the specific ser-
vices in use. Furthermore, the analysis will be conducted from the point of view of the back end,
trying to minimise the overall dependencies from the rest of the compiler. If the PC maps could
be obtained by customising only the back end, the whole system would be usable with multiple
front ends, and therefore with different high-level languages. A given set of specifications for the
source programs (the use of the customised memory manager, for instance) would then assure
compliance with the system requirements, and all the code compiled with the modified com-
piler would automatically acquire the ability to have garbage collection, persistence, etc. Even
better, custom services could be plugged into the system in a seamless way. The possibilities
certainly look very interesting. The prototype described in Cha®isrindeed able to generate
automatically PC maps from source code written in multiple languages. Further references, more
specifically related to the customised liveness analysis described in Chapter listed at the
end of Sectiorb.1

3.2 The context

Tracking pointers, in general, can be a rather challenging task, especially if a relative degree of
independence from the specific high-level language is desired. Many programming languages do
not handle pointers in a very abstract way, rather considering the numeric value of the pointer

3 Implementation Techniques 21

as all the required information. For instance, the C language allows the programmer to convert
freely a pointer into a scalar value and vice versa. The compiler, however, will be unable to detect
pointers that are manipulated, in parts of the program, as simple integer values.

Similarly, it can be problematic in certain cases to discover the connection between a pointer
and the memory block to which it logically refers. In certain cases a pointer that is used as a base
pointer for certain memory operations can even point outside the address range to which it refers
(for instance), as discussed in SectbhOand more extensively in Chapt&®. Furthermore, in
a compiled program several kinds of pointers can be present: pointers to the code, pointers to the
stack, pointers to the heap, pointers to system structures and so on.

While those problems can, in general, be addressed in various ways depending on the spe-
cific situation and the functionalities required for the particular memory management operations
involved, trying to fully support languages like C and C++, with their low-level handling of point-
ers, would prove to be a particularly frustrating, and probably pointless exercise, as suggested by
the existing efforts to add some form of automatic garbage collection to C and derivatives. To
be able to explore the problems involved in the tracking of pointers while maintaining a more
general view of the problems, it is therefore useful to define more clearly the typical environment
and language features that we want to be able to support. The result will be a set of guidelines to
which the high-level source code should conform in order to gain automatic pointer tracking, and
an indication of the techniques that can be used by the compiler to offer such a feature.

While the exact details of what can be allowed in the source code will become more evident
throughout the discussion of the implementation techniques, the context can be summarised as
follows. First of all, the system is assumed to support a family of imperative high-level program-
ming languages that make use of a stack and a dynamic heap to store their data. While all the
pointers will be considered, special attention will be paid to pointers which refer to heap blocks.

It will also be assumed initially that those pointers refer to the base location of heap blocks, and
the more general case (derived pointers) will be discussed in ChHptdt will be necessary

to require that all the pointers can be recognised by the compiler. Consequently, conversions of
pointers into scalars and vice versa will have to be disallowed. Similarly, unions in which point-
ers can share memory with scalar values will have to be treated with care. Absolute pointers, not
related to structures that can be relocated (code, stack, heap) may create problems, and their use
is not advisable. Finally, it will be necessary to specify the layout of heap blocks, so that their
pointers can be found at runtime.

Despite the fact that those restrictions might appear stringent, most of the “well-behaved” pro-
grams written in modern programming languages will actually conform to the specifications quite
easily. For instance, in a Java program the objects are allocated specifying their class (from which
the object layout can be easily obtained). Java pointers are handled implicitly by the language and
are kept distinct from scalar values. It is very common for an implementation of Java pointers to
have them always referring to the beginning of an object. Consequently, ordinary Java programs,
compiled to native code, could be supported with relative ease.

3 Implementation Techniques 22

3.3 A test environment

The test environment used to verify the feasibility of such an implementation was GCC, version
3.3.3 [Stalj. Only modifications to the back end have been used, with good results. The test
architecture used for the prototype was the SPARC ${8aP2, although similar modifications
could be easily applied to back ends of different microprocessors as well.

3.3.1 Why GCC?

As previously mentioned, the idea behind the tables generation was to extract information about
the pointers, and more generally about the primitive types used in the various data structures,
directly from the compiler. Furthermore, the modifications should ideally be confined only to
the back-end, and no change to the front-ends should be needed. The ideal candidate for the test
environment should have a clear defined separation between the front-end and the back-end, and
the source code of the compiler should be readily available.

Various compiler suites were considered (some are mentioned further in the text), but GCC was
found to have the following advantages:

e Itis modular and easily customisable.

e Itis open source, therefore all the source files are widely available without charge.
e Itis an industrial-strength product, extensively used world-wide.

e Itis constantly maintained and updated.

e Several front-ends are available for many of the most popular languages (Ada, Java, C, C++,
FORTRAN, COBOL...), which allowed a more extensive experimentation using different
front-ends.

¢ It has been ported to a large number of different architectures, and its inner core is cer-
tainly flexible enough to support any microprocessor architecture commonly available. The
standard distribution supports some thirty different microprocessors (i386, SPARC, MIPS,
MC680x0, Alpha, ARM, VAX, PowerPC, SH3, etc.), and more are supported using addi-
tional packages.

e The interface with the back-end is clearly defined and has been stable for many years. The
back end description for every architecture is contained in a small number of files (typically
justthree). Everyone can easily create new back ends, or customise existing ones, following
the available documentation.

Being such a widely used tool, implementing the desired support in the context of GCC shows
how the techniques described can be applied to a real development environment. Part of the
analysis developed in the following chapters, in particular the content of CHapgedriven by

the desire to simplify the implementation of PC maps in the context of an existing compiler, rather

3 Implementation Techniques 23

than re-design everything from scratch. Among the other compilers considered, Ft@@] |
could have been a possible choice, but its being exclusively a C compiler would have prevented
experimentation using multiple front-ends. SUKOH *00] was another possible choice, but the
environment was not fully stable at the time. Both SUIF and SUIF2 have not seen new releases in
several years, now. Other compiler suites considered either were closed-source, required payment
of fees to access the source (for example, the Amsterdam Compiler TodBt983) or were
limited to single languages or single microprocessor architectures.

Overall, considering all the points mentioned above, GCC seemed to be the most appropriate
test platform. A minor drawback of GCC is its relative internal complexity, but in this case only
the back end needed to be analysed and customised. The results eventually obtained seem to
confirm the suitability of the choice.

3.3.2 SPARC V8

Among the many different microprocessor architectures supported by GCC, it was necessary to
select a first test case to proceed with the implementation. Since part of the problem is tracking
pointers in registers, the architecture chosen should have several registers. The availability of
the architecture was also a factor taken into account. Among the possible candidates were Al-
pha, PowerPC and SPARC. The SPARC v8 architecture was eventually chosen, mainly to verify
whether even an architecture with some uncommon features (window registers and delay slots,
among others) can be successfully supported. Any other architecture could have been selected for
the test, and further tests might be conducted in the future using different microprocessor families.

3.4 Types and modes

3.4.1 Modes

The concept of type, as it is used in high-level languages, is fairly complex. Different notions of
type equivalence (by name, structural,...) combine with a variety of type constructors, primitive
types and other aspects in sometimes very sophisticated and complex type systems. As previously
discussed, the level of abstraction needed in order to manipulate memory is much lower, and it is
the minimal required in order to perform the necessary translations and conversions.

If a single microprocessor architecture is in use, it is sufficient to know whether a register, or
a memory location, contains a pointer or a scalar value. If multiple architectures are involved,
conversely, or if complex manipulations are required on the internal data representation, it might
be useful to know which of the different primitive types is assigned by the compiler, at any ma-
chine instruction, to registers and memory locations. The whole complexity of the high-level type
system is not necessary. Furthermore, as explained later, there are cases in which the registers or
memory locations contain temporary values that result from operations performed at the machine
language level, and that have no exact correspondence with any type used at high level.

To avoid possible confusions, the low-level type interpretation of the content of registers and
memory cells will be called, from now on, “mode.” Therefore we will say, for instance, that at a

3 Implementation Techniques 24

certain point in the code the mode of a register is pointer, or scalar. Or, if we need greater detalil,
we may say that the mode is 8-bit scalar, or 16-bit scalar, or pointer and so on. The mode is, in
general, loosely related to the way in which the compiler uses registers and memory to reflect the
primitive types used in the high-level program code. However, in some cases, they may derive in
non-trivial ways from temporary values or from particular expansions of high-level constructs.

As previously mentioned, the most important distinction among the possible modes is certainly
the one between pointers and scalar values. However, depending on the kind of manipulations
that are required on the data, or possibly on the code, more refined distinctions are possible. It
may be useful to define distinct modes, for instance, for the following:

e pointer to a heap block

pointer to a stack location

pointer to executable code

integers of various sizes

floating points of different sizes

unused

“split pointer”

Knowing that a register contains a pointer to the heap or to executable code can simplify, in certain
cases, its handling. For instance, if we are interested only in heap manipulations, all the pointers
to executable code can be safely ignored, avoiding the need to check at runtime for every pointer
whether it really refers to a location inside the heap or not. Knowing that a register is unused at
a certain point can be used to avoid unnecessary operations. For instance, it is not necessary to
perform data conversions on the content of registers and memory locations that are known to be
unused. It is worth pointing out that a specialised floating point register can indeed have a mode
different from “floating point”. For instance, a floating point register might be actually used to
store integer values or even pointers, as a buffer for other registers, or it might be simply unused.
The “split pointer” mode will be discussed in detail in the next section.

Ideally, the compiler should be able to distinguish internally all of the listed modes, so to allow
us to produce tables containing the most accurate information. However, such a fine distinction
is not always present in the low-level intermediate representation, available before the machine
code generation. The tables will have to be built, therefore, with the kind of information that
is available. For instance there might be no indication of whether a certain register is unused
while some code is generated. In that case, it might be necessary to inspect the intermediate
representation to reconstruct the lifetime of the register’s content. Another example could be the
lack of distinction among multiple kinds of pointers. If all the pointers are treated in the same
way, itis then necessary to check them at runtime to distinguish pointers to the heap from pointers
to the stack, and so on.

3 Implementation Techniques 25

The fact that all the modes listed above refer to logically different, albeit low-level, uses of val-
ues, can be taken as an indication that compiler designers should really introduce more categories
of primitive data in the low-level intermediate representation used by the compiler. GCC, as we
shall see, offers a fairly extensive range of low-level categories of values, which can be remapped
onto modes in a way that is fairly adequate for our needs. Some postprocessing of the information
extracted from the compiler will be applied on the information extracted from the back end, as
explained in Chaptersand10.

3.4.2 Split pointers

A peculiar condition may arise in RISC machines, in which all the machine code instructions are
of the same size and there is not enough space inside a single word to fit both the opcode and a
long literal. In that case, RISC microprocessors usually offer two distinct machine instructions,
used to load respectively the high and the low part of the literal in a register. For example, let
us force the compiler to return a 32-bit value as a pointer, so that we can compare the result on
different microprocessors.

The original C program is:

char *xyz () { return(char*)0x6abc92fd; }

The code fragment is expanded as follows:

Microprocessor Expansion
x86 movl $1790743293, %eax
680x0 move.l #1790743293, %a0
PowerPC lis 3,0x6abc
ori 3,3,37629
SPARC v8 sethi %$hi(1790742528), %00
or %00, 765, %00
MIPS 1i $2,1790705664
ori $2,%2,0x92fd

Table 3.1: Loading a 32-bit constant in a register

As shown in Tabled.1, while CISC machines (x86, 680x0) offer instructions to load the entire
32-bit literal in one step, RISC machines (PowerPC, SPARC, MIPS) must load separately a high
and a low part. In particular, MIPS and PowerPC load two 16-bit half-words, while the SPARC
v8 loads initially the 22 high bits, and then fills in the remaining 10 bits using the “or” instruction
[Spa92.

That causes an interesting problem if the program is preemptively stopped exactly in the mid-
dle of the two-step sequence. If the value being loaded is a pointer, while the previous content
of the register was a scalar, for instance, the partially loaded register is not yet a meaningful
pointer, and yet it is no longer a scalar. The mode of such a register at that point will be defined

3 Implementation Techniques 26

as “split pointer”, to denote its peculiar state. A split pointer pointing to a heap block cannot
be modified as easily as other values, since its low part will only be loaded when execution is
resumed.

Potentially, handling such a value could be problematic, since at runtime it is not obvious to
which heap location the split pointer will eventually refer once complete, and consequently what
adjustment should be applied in case some heap memory should be moved. In practice, however,
the problem does not normally arise. First of all, loading a literal as a pointer involves the use
of absolute pointers. User code, with the exception of low-level code, does not usually contain
absolute pointers, as they are discouraged by modern programming practices. Furthermore, pro-
grams which allocate memory on the heap will only obtain back from the heap manager complete
pointers and there would be no reason for the code to deal with absolute references.

Depending on the implementation, the compiler might generate absolute pointers when refer-
ring to global data. Those pointers, however, do not refer to heap objects, and are therefore not
involved when a heap reorganisation is necessary. Similarly, if absolute pointers are used to refer
to memory-mapped I/O devices, their values do not need to be adjusted when the heap is reorgan-
ised. If the heap is the only area in which memory can be moved, therefore, split pointers can be
left untouched as long as the user code never addresses the heap using absolute pointers, which is
by no means a stringent restriction.

If the manipulations required, on the other hand, require globals, code, or stack to be moved
and absolute pointers are involved, a bit more work is required. To begin with, it would be quite
unlikely to encounter absolute pointers referring to a location within the stack. Relocating the
stack does not pose particular problems, therefore, as far as split pointers are concerned. Absolute
pointers to code locations could be present if absolute code is generated by the compiler. Those
occurrences can be easily eliminated if the compiler is able to generate position independent code,
which is usually the case on many environments. Similarly, globals could be accessed using an
absolute address, but they will not be present if the compiler can be asked to generate instead
accesses referred to a certain base register in order to access globals.

If absolute pointers are really desired, it is still possible to relocate globals and code if they are
moved as a single block and it is possible to distinguish split pointers that refer to those areas
from split pointers pointing somewhere else. For example, on the SPARC a split pointer differs
from a complete pointer only in the ten low-order bits. That means that a split pointer can be at
most 1024 bytes displaced with respect to the corresponding complete pointer. If globals, stack,
code, heap, and other data present in memory are all separated by at least 1024 bytes, it is always
possible to tell to which area a certain split pointer refers to, and adjust its value accordingly if
one of the areas is moved.

If still more control is desired, finally, it is possible to adopt yet more solutions. For instance,
if the two instructions that load the high and low part of the pointer are contiguous, the short
sequence could be treated as a sort of critical section. Alternatively, a flag could be added to the
PC maps so that the runtime module can recognise that the interrupt happened between the two.
Upon return from the service routine, the two-instruction sequence can be re-executed from the
beginning so that the pointer is reloaded correctly.

In fully optimised code, however, it is not infrequent to treat the load-high and the load-low

3 Implementation Techniques 27

instructions independently and, because of code optimisation, the two parts could be separated
by an arbitrary amount of code. In that case, it is still possible to preserve in the PC maps the
association between the register containing the split pointer and the expression used to compute
the address that will be eventually loaded. When a service routine is called, and some memory is
moved, it is then possible to recalculate the full address and reload the value of the split pointer
accordingly. Chaptet0discusses this solution in more detail.

3.5 More elements to consider

The base concept of PC maps is relatively simple, but there are some details that must be taken
into account. For example, it is necessary to deal appropriately with subroutine calls. From the
point of view of the assembler code a subroutine call is just one instruction in a sequence of other
instructions, and the PC maps will just specify the state of registers before and after its execution.
However, the impact of the instruction on the state of the registers can be rather complex — some
registers will be used by the subroutine, others will be overwritten with local values by the callee,
and others may be used for return values. Itis therefore necessary to determine how the subroutine
call, considered as a single entity, affects the mode of the various registers and to calculate the
mode maps accordingly. Although the identity of the subroutine which will be called may not be
statically known, the compiler knows, for each call site, the list of arguments used and the return
value, and the mode used by each of them. The standard specified for a certain microprocessor
by the Application Binary Interface can then be used to reconstruct which registers are used for
which argument, which registers are preserved by the call, which ones are overwritten, and the
general overall impact of the call.

Another important aspect is that the mode analysis described is only able to determine the
mode of registers which are actively used within the routine body, but nothing can be said, just
by looking at the current routine, for those registers that are set in a certain mode by the caller
and are preserved as they were during the entire routine. The simplest way to determine the
mode of those registers is just to extract the address of the caller from the stack and look in the
corresponding mode table, traversing if necessary the call chain until the mode of all the registers
is known. Potentially, the procedure would involve an unknown number of steps, since the depth
of the dynamic call chain is not known. In practice, the number of steps required to complete
the whole map will be fairly limited, since the typical stack depth in a non-recursive program is
generally limited. Besides, the whole stack needs to be scanned in any case in order to discover the
pointers contained in each frame. In any case, if an absolute real-time constraint for this particular
operation is required, it is possible to adopt a slightly different solution that allows the system to
determine the mode of all the registers in constant time, at the expense of a small overhead during
calls. By passing from routine to routine the mode mask, for instance by pushing the previous
one on the stack and combining it with the map of the callee, the complete mode information is
always ready for use, and it can be obtained in a constant number of instructions.

Another interesting problem concerns the prologue and the epilogue of each routine, that is the
portions of code appended before and after each routine body. The purpose of the prologue is

3 Implementation Techniques 28

to create a new local environment for the execution of the callee (possibly saving some registers
on the stack, and creating a new stack frame), while the epilogue should remove the current
stack frame, restore the saved registers and transfer the return values where appropriate. In the
prologue, for instance, the mode of a certain register might depend on the PC maps defined for
either the current routine or the caller, depending on the position in the code. Before the point
in the code in which the value of a register is saved on the stack, its mode depends on the caller,
while after the value is saved the mode depends on the local map. If multiple push operations are
performed, it is necessary to determine with precision whether each register is “owned”, at each
instruction, by the caller or by the callee. Some additional data will have to be included in the
maps, in order to enable the routines called preemptively to determine the mode of each registers.
Similar considerations apply, symmetrically, for the epilogue.

3.6 Unusual features of compilers

Optimising compiler systems may sometimes use techniques that can make determining the mode
for the various data more complex. One of the features that can hamper the task is the ability to
fit, if required, multiple values of small data types inside a single register or block of registers.
That may happen, for example, in the “packed record” type in Pascal, or using bitfields in ANSI
C. As an example, this is a fragment of C code that uses bitfields:

void oo(register int s)
{
register struct {
int r:5; /* 5 bits */
int c:11; /* 16 bits used so far */
int *u; /* 32-bit pointer, not aligned */
int e:16; /* another 16 bits */
box;

.e=s;
.C=8;
.r=s;
.u=(int*)0x12345678;

XX X X

}

The resulting expansion of the function body, compiled by GCC for the Motorola 68020 micro-
processorfot92] is shown below (commented for clarity). Note that, in MC68020 bitfields, bit

0 is the most significant bit. If a short integer is stored in a 32-bit register, therefore, the bits used
are 16..31.

o\

move.w %d0, %$d2

bfins %d0,$d1{#5:#11}
bfins %d0,%$d1{#0:#5}

bits 16..31 of d2 (x.e) are filled with s.

bits 5..15 of dl (x.c)\ Bits 0..15 of dl
bits 0..4 of dl (x.r)/ are used

o o\

clr.w %dl

3 Implementation Techniques 29

or.w #4660,%dl % half of the ptr in dl, bits 16..31
and.l #65535,%d2
or.l #1450704896,%d2 % half of the ptr in d2, bits 0..15

As the example shows, the two registers d1 and d2 are used together as a combined representation
of the packed structure and neither of them fully contains either a scalar or a pointer, forcing a
slight rethinking of the mode description strategy. Although the problem may appear rather com-
plex, there are several possible solutions. A simple strategy is disabling the packing mechanism of
the compiler, so that the resulting structures maintain pointers and scalars distinct. That solution,
although simplistic, is satisfying in a number of cases, but it might have an adverse effect if the
user program needs bitfields to access I/O devices, for instance, or makes use of packed structures
created by pre-existing code.

If support for packed structures is required, a more complex but more complete solution can be
implemented associating modes not just with separate registers and memory locations, but also
with strings, arbitrarily long, of bits. In that case, we would describe, for instance, that in the
register block “d0,d1,d2,d3..” we have a pointer from bit n to bit m, while the rest of the block
contains scalar values. The information could be extracted from the internal structures of the
compiler that describe the packed structure and its association with part of the bank of registers,
or with a certain area of memory. The tables required to maintain this more precise information
would be somewhat more complex, but nothing would change from a conceptual point of view,
since we would still have separate data components, each one with a distinct and well defined
mode.

A similar problem may appear, on some architectures, when passing structures by value as
arguments, which are then split in multiple registers for the argument passing. Similar solutions
can be adopted in this case as well, for instance by forcing the compiler to use memory-based
storage instead, or simply by calculating the modes for individual bitfields as previously detailed.

3.7 Unusual features used in microprocessors

Dealing with certain features of some microprocessors can be quite complex. We have already
discussed the problems deriving from split pointers. Other peculiarities, sometimes found in
microprocessor architectures, can also make the task of determining the modes more difficult.

3.7.1 Register windows

One of such features is the use of register windows. The term refers to the availability of a certain
number of physical registers in the microprocessor, only a subset of which are visible at any
given time to the user program. At least in principle, just by sliding the window of the available
registers, it should be possible to avoid many of the traditional save/restore of registers on the
stack that are typically found in the prologue and epilogue of compiled functions. Consider, for
instance, the diagram in Figuge7.1

3 Implementation Techniques 30

When the register window is moved, registers R5 and R6 become accessible as registers R1 and
R2, while new registers are available, all without accesses to memory and in a single step. Despite
the apparent attractiveness of the solution, register windows are generally considered not to be
very effective in modern multitasking computer systems, mainly due to the fact that, each time a
context switch is necessary, the whole set of used physical registers needs to be flushed to memory
and the previous set to be restored. Register windows have mostly disappeared from modern
microprocessors, but are sometimes retained for compatibility, notably in the SPARC architecture.
Notably, the Itanium processor (IA-64) uses a similar feature, named “register fraRie@7][

When determining the mode of registers, when register windows are used, two orders of prob-
lems appear. First of all, some values “disappear” in the hidden registers inside the microproces-
sor, and it might be difficult to determine their mode when they are extracted. Secondly, registers
can change name, appear and disappear in a single step, and it is therefore necessary to take into
account the necessary adjustments. The first problem is only apparent, since the register win-
dows mechanism is always used in parallel with some backing space in the stack frames. When a
context switch takes place, for instance, the operating system takes care of extracting the hidden
portion of the physical registers bank and saving the various parts in the reserved space inside the
stack frames. After this operation has been performed, all the “invisible” registers are saved to
memory and the situation can be handled as if the register windows were never used.

Slightly more complex, but not by much, is considering the effect of the window shifting during
the prologue and the epilogue. A single pair of instructions (save/restore on the SPARC) is used
to change the current window, with the effect of causing an automatic save of the registers used
by the caller and at the same time “renaming” the registers used as parameters for the callee. The
save operation can be seen as equivalent to a save on the stack, and the only necessary precaution
is to change the attribution of the modes to registers at the same time in which the window shift
takes place. The complete compiled routine will therefore have to be divided into three sections:
the first, before the save, and the third, after the restore, will use the register window used by the
caller, while the code in between will use a different window, and a different mapping of register
names over the physical registers.

3.7.2 Delay slots

The term “delay slot” refers to a mechanism (delayed control transfer) by which, when a jump
instruction is encountered, one additional instruction, immediately following the jump instruction,

1/2/3(4/5/6(7|8|9[10{1112{13]14|15|16

819|10/11(12|13{14/15|16
R1|R2|R3|R4|R5|R6

Figure 3.7.1: Register windows

3 Implementation Techniques 31

is executed before control is transferred to the jump target. The delay slot itself is the position in
the code which contains the additional instruction involved in the delayed execution of the jump.
Originally, delay slots were a way to improve the efficiency of pipelined execution, but are now
mostly retained for compatibility reasons, notably in current SPARC microprocessors. Similar
features, sometimes involving multiple delay slots or different kinds of delayed instructions, were
also introduced in the IBM 801, AMD 29000, MIPS R2000 and many othe&HC93.
The reason why delay slots can complicate the construction of PC maps can be understood by

analysing the following code fragment:

Q

mov 6, %ol
b .away

mov 9, %00 # executed before the branch

.here: st %00, [%fp-12]

In this example, there is absolutely no relationship between the occurrences of %00, despite the
fact that the two instructions appear to be consecutive. That code is really equivalent to:

.here: st %00, [%fp-12]

in which it is clearer how the two instructions are actually unrelated. The delayed effect of the
jump must, of course, be taken into account when reconstructing the life of every register during
the liveness analysis. Furthermore, the instruction in the delay slot, under certain circumstances,
can be “annulled”. The annul bit, available for certain branch instructions, is a further form of
code optimisation that influences the order of execution, and may be used to reduce the number
of jumps in tight if-then-else sequences by annulling the instruction that implements one of the
two alternatives. For, instance, the code:

if (x>4) g=1; else s=2;
is compiled by GCC, using the maximum level of optimisation, into:

cmp %00, 4
ble,a .LL3 # branch if less or equal
%02 # -> delay slot

LL3:

If the branch is taken, the instruction in the delay slot is executed and the execution continues at
the label LL3. If the branch is not taken, instead, the instruction in the delay slot is fetched but
ignored, and the following one is executed normally.

3 Implementation Techniques 32

Even more confusing is the situation when subroutines are involved, since the return address is
actually the instructiomfter the instruction in the delay slot. While building PC maps describing
the content of registers for values of the program counter in the current function, therefore, it will
appear as if the effect on the registers of the call instruction is combined with the effect of the
instruction in the delay slot. For instance, consider the following fragment of SPARC machine
code.

call abc, 0
mov %il, %00

1d [500], %ql

If the microprocessor is interrupted right after the call, no effect from the execution of the call
will be visible on the registers, since the call has not been really executed yet. Conversely, if the
microprocessor is interrupted after the following instruction, it means that the instruction in the
delay slotand the call have both been already executed. The liveness algorithm must take into
account that combined effect in order to create accurate PC maps.

Additionally, there is the possibility that the instruction in the delay slot is the target of an exter-
nal jump, independent of the call. In that case, a static analysis of the liveness of registers would
need to take into account two possible apparent effects of the same instruction, one including the
effect of the call and one without. Determining dynamically which of the two possible alterna-
tives is followed can be particularly complex. On the SPARC, a special internal register (nPC)
involved in the execution of delayed branches can be inspected during the interrupt to find out
which execution path will be followed. Apparently, GCC never uses instructions in delay slots as
targets of branches, which partially simplifies the problem.

Due to the effect of delay slots, determining the real content of registers is not as easy for the
SPARC as it might be for other architectures. Suitable algorithms were developed in the context
of this research by carefully analysing the possible effects of the delay slots in the various cases,
and rearranging the internal representation of instructions and control flow. A formal description
of the technique is available in Chapter

3.8 Tracking modes in the stack

Nearly all of the previous discussion was devoted to the techniques that are necessary to track
the modes of the data contained in the registers. Several problems, however, are also involved in
tracking the modes of the various elements present in the stack. In this section we will introduce
in general terms the problems related to discovering pointers in the stack. A more exhaustive
discussion will be made in Chaptér

3.8.1 Stack components

The stack is generally used for all the information that needs to be stored when a new subroutine
is called and automatically disposed when returning to the caller. For instance, all the param-
eters that outnumber the available registers are typically stored on the stack. The save area for

3 Implementation Techniques 33

registers that need to be preserved across the subroutine is also contained in the stack, as are the
return address (dynamic chain), possibly some space for the return value, the local variables, and
the temporary values used when composing functions or performing mathematical calculations.
Conceptually, the stack could also be used to store the static chain, used by languages with nested
procedures (like Pascal), necessary to find the variables belonging to enclosing procedures.

Many object-oriented languages allocate their objects in the heap, but it is in principle possible
to allocate objects which should by entirely dynamic on the stack, if it is possible to prove that
those objects will never be used after the end of the current subrotitiiBg9, GS0Q GS99.

Such techniques speed up the code by avoiding the overhead required by a heap allocation, but
on the other hand require special attention while operations on the heap, a garbage collection
for instance, are performed. As far as pointer discovery is concerned, handling such specially
allocated objects does not require greater effort than needed for heap objects, as will be explained
later. Stack allocation is not very frequently used in practice, mainly because of the additionally
complexity in the implementation.

3.8.2 Problems and solutions

In order to discover all the pointers, it is necessary to establish the modes of the data contained
in all the components listed above, so that the proper modifications can be applied whenever a
memory manipulation is required. Let us discuss briefly the various components that can be found
on the stack. The modes of the locations in the registers save area can be discovered since each
location is uniquely associated with a register, as it was used by the caller. The modes of the
locations used for the arguments that do not fit the available registers are trivial to determine,
inspecting the list of arguments which is being compiled, and similarly for the return value. The
temporary values area can be treated in a manner similar to the local variable area.

3.8.2.1 Uninitialised pointers

A more subtle issue, however, might arise from those locations which are supposed to contain
pointers but are really unused. For instance, a given stack location might be reserved to store a
certain local variable, known to contain pointers, but in the first part of the code the location might
not be used. Before the first initialisation of the memory location is made, the value would appear
to be a pointer, but it would contain some random data left from the previous use of that memory
location. The low-level mode that should be really assigned to that location during the first part
of the code, therefore, should be “unused”, rather than pointer.

If the location is unused, modifying its content would be harmless (the value is unused anyway),
but interpreting the value as a valid pointer during a garbage collection could prevent some parts
of the heap from being reclaimed. Such an approach would be, to an extent, conservative, since it
would not be possible to determine the exact set of pointers active at any given moment. In order
to avoid the possible problems related to previous values left in memory, one possibility could be
to initialise the stack slots containing pointers to a conventional value (null, for instance) at the
beginning of the procedure. At the expense of some overhead, that would ensure that every value

3 Implementation Techniques 34

contained in such a pointer is a valid pointer to an object (even if, strictly speaking, it is possibly
no longer really in use).

If it is possible to determine statically the first and the last points in the code when a certain local
variable is used, on the other hand, it becomes possible to discover when a stack slot containing
a pointer is not really used, and a greater precision in the determination of the pointers set can be
achieved. In general, it is not possible to discover the real last use of a pointer unless a dynamic
tracing is performed. For instance, if there is a loop in which the same pointer is first read and
subsequently written, and the pointer is no longer used after the loop, we can only say statically
that the pointer might be alive towards the end of the loop, since it might be reused in the following
iteration.

3.8.2.2 Arrays of uninitialised pointers

Determining the mode of single local variables, performing a liveness analysis, is relatively easy.
Things, however, become more complicated in the case of arrays. Array elements can be individ-
ually initialised and used in an absolutely arbitrary order, using an indexing operation in which the
value of the index can be an arbitrary expression. The value of such an index cannot, in general,
be statically predetermined. In other words, it becomes impossible to determine statically the first
and the last use of each individual array element, and consequently to determine, in the case of an
array of references, when an element is a real pointer and when it is unused.

If dynamic tracking is not used, a conservative approach is the only reasonable approach. Sim-
ilarly to what was described in the previous subsection, it might be useful to pre-initialise all the
pointers contained in stack arrays (and pointer arrays in the heap as well, since the problem is
similar) to a conventional, “safe” value. Java, in this sense, has the added advantage that every
heap object and stack frame is explicitly initialised every time. As this behaviour is not part of the
specification of other languages, like C and C++, initialising all pointers in the stack and the heap
to a conventional value can represent a significant source of overhead with respect to the standard
compiled code.

3.9 Tracking modes in the heap

Determining the modes of the various parts of memory blocks in the heap is probably the easi-
est part. As mentioned, we are assuming that all memory allocations take place through a cus-
tom memory manager, which is integrated with the memory manipulation subsystem. If we re-
quire each memory allocation to specify, using a descriptor, the structure of the record/memory
block/object which is being allocated, it is quite simple to detect the modes (at the very least the
pointer/scalar condition) of all the data inside the allocated block.

A possible problem might arise from the use of unions, or, in Pascal terminology, variant
records. The overlay among the different variants may easily cause scalars and pointers to share
the same physical storage. In principle, it is possible to reorganize the record structure so that no
scalar ever shares a memory location with a pointer. This solution might break binary compati-
bility with code generated by a pre-existing compiler, but would allow some form of support for

3 Implementation Techniques 35

variant records. As a side note, it is useful to consider that, in modern object-oriented languages,
variant records have been effectively replaced by objects, using inheritance to extend in different
ways a basic structure, without the inherent problems that variant records have.

3.10 Pointers and derived pointers

Until now we have discussed extensively the handling of scalar values and pointers. The implicit
assumption was that pointers refer, when pointing inside the heap, directly to a memory block
allocated using the facilities offered by the custom memory manager. In certain cases, however,
pointers might not refer directly to the base location of such blocks, but more generally might refer
to a certain memory block even without pointing to it. The obvious case is the pointer arithmetic
available in C, where a pointer can be made to move inside an array to access one element at a
time.

The use of virtual origins for arrays is another example. Consider for instance the following
Pascal fragment:

VAR a:ARRAY [4..9] OF INTEGER;
BEGIN

i:=aljl;

If certain optimisations are applied, the pointer used to refer to the array could point not to the
beginning of the array, but to the position that a hypothetical elemertwould have, so that the
indexed access can retrieve the correct element without requiring adjustments to the index. This
form of access implies that the value contained in the pointer is obtained from the base pointer by
adding to it, possibly multiple times, certain offsets. A similar form is used when, for instance,

a component of a record is passed to a procedure whose parameter is a reference to a variable
(forms VAR in Pascal, and T& in C++). In both cases, the logical link between the original block

of memory and the derived pointer must be preserved even if the memory block to which the
pointer refers is moved.

The handling of this kind of pointers will be discussed extensively in Chdtdout the main
choices are either preserving the exact expression that leads to the derived pointer, so that the
pointer can be recalculated if some memory is moved, or alternatively trying to discover the mem-
ory block associated with the derived pointer by evaluating the possible values that the derived
pointer might assume at runtime.

Another issue related to the handling of pointers is the handling of arbitrary conversions be-
tween pointers and scalars, as may be done in C. Such conversions may cause pointers to be
unrecognisable as such by the compiler, and would interfere with the mechanisms of pointer
discovery. It is worth pointing out that such conversions are typically only used while writing
low-level code, and can otherwise be avoided in most cases.

“Have a nice day!”
‘Of course I willl... but when?”
— Anonymous

Chapter 4

Pointer Discovery in the Registers

In the previous chapters the idea of PC maps was introduced, and some of the problems that
are involved in their creation were briefly discussed. In this and in the following chapters, a
much more in-depth analysis will be conducted on the techniques that can be used to discover
the pointers present in the system while using PC maps. This chapter, in particular, focuses on
the discovery of pointers in registers at every machine instruction. A particular form of liveness
analysis, useful to this end, will be discussed in detail in the next chapter. CbhaptdiIChapter

will describe, respectively, pointer discovery in the stack and the heap.

4.1 Introduction

As previously mentioned, determining whether registers contain pointers or not while running
compiled code can be rather complex. The main factor that makes the task difficult is the fact
that registers can change their mode very often, potentially at every machine instruction. Creating
PC maps detailed enough to support preemptive pointer discovery, therefore, requires the mode
information to be available with the level of detail of the single machine instruction. Adopting

a purely static approach, that means that the compiler should calculate, while generating the
assembly code, the full mode information for each individual register for each instruction in the
final code. In other words, the compiler should determine, during code generation, in which parts
of the final code each register assumes each of the possible modes.

For example, let us say that we need to perform a compacting garbage collection. For each
point in the code in which we want to be able to perform the operation, we would like to obtain
the minimal set of registers which might contain pointers, excluding those which certainly are
no longer used. Such a fine level of detail, however, can be rather difficult to obtain. The ideal
situation, of course, would be having the ability to design a complete compiler system from
scratch, including in its core design the distinction among the different modes, and propagating

36

4 Pointer Discovery in the Registers 37

such distinction down to the final assembly code. In practice, however, it might also make sense
to try and adapt an existing system while adding the new functionalities. There can be several
reasons for such an approach, first of all the need to preserve a possibly large economic investment
already made while developing a certain compiler system, but also, for example, the ability to
support special front ends or machine architectures, a particularly high quality of the generated
code, or compatibility needs with different components. Adapting an existing compiler, on the
other hand, might require some substantial work since, in certain cases, a distinction must be
introduced among certain internal data types where there was none before.

Even in the ideal case in which a complete compiler can be newly designed, however, there
are certain challenges that need to be addressed. A distinction among different modes in the
intermediate representation can be used at the level of the internal representation, but carrying
this distinction down to the level of the individual assembly instructions can require more work.

In order to perform many optimisations, the compiler will rely on liveness information calcu-
lated at the level of the intermediate representation. For instance, manipulations like dead code
elimination, loop invariant movements, and so on can be performed directly on the intermediate
representation. Once that intermediate form is expanded in the final code, however, the liveness
information previously calculated might be not detailed enough to allow for a reconstruction of
the mode of all registers at each individual machine instruction.

The final stages of code generation will expand the internal constructs of the intermediate rep-
resentation into possibly rather complex sequences of assembly instructions. The liveness of each
register in the resulting code, will depend not just on the expansion of a single construct, but rather
on the entire sequence of expansions. Some of the resulting expansions, furthermore, might be
not just macro expansions, but the result of compile-time procedures that generate different code
depending on the circumstances. Certain physical registers might be used or not, in the expan-
sion for a given construct, depending on the specific code generated by the expansion rule in that
particular case.

In other terms, a further liveness analysis of some sort might be required, using the real regis-
ters and the machine instructions rather than the intermediate representation. Performing such an
analysis at the same time as the final code production would be far from easy, and would con-
siderably complicate the structure of the back end. The Java compiler by Stichnoth et al., works
around this issue by using an intermediate representation that has a one-to-one relationship with
the individual assembly instructionSILC99. That means that the intermediate representation is
actually, during the last stages, just an abstract representations of the final code, instruction by
instruction. The advantage of such a solution is that the compiler can perform a liveness analysis
on the low-level intermediate form and then reuse the same information for the machine code.
On the other hand, tying the intermediate representation so strictly to the concrete machine code
(x86 in that case) makes it considerably difficult to adapt the compiler to different architectures,
since the separation between the intermediate form (which should be architecture-neutral, in prin-
ciple) and the actual back end is lost to a great degree. Similar problems, while reconstructing
the liveness of machine registers, are also present when an existing compiler is adapted in order
to introduce distinctions among multiple modes.

4 Pointer Discovery in the Registers 38

4.2 Local annotations

In order to simplify the problem in the general case, in which a neutral intermediate representation
is used, a different approach can be followed separating the code generation from the computation
of the mode information. That can be achieved by generating, while the code is produced, addi-
tional annotations that refer to the way in which the registers are used locally in each expansion.
Those annotations can then be parsed and postprocessed during a separate stage, simplifying the
overall structure of the system.

The main point is that, if mode information is available at the level of the intermediate repre-
sentation, it is normally also possible to determine, in the expansion of every construct, whether
each register is locally used or defined in a certain mode within that expansion, even if there is no
indication of the interactions of those occurrences with preceding or following expansions. For
example, let us consider a fictional intermediate representation and an expansion rule used to load
a scalar value using a sum and an array access, defined by base address, index and offset.

scal:A <- array: (ptr:B[scal:C+const:D])+scal:E -- expands as:
move B[C+D],A % A written as scalar, B used as ptr, C used as scalar
add E,A,A % A written as scalar, A used as scalar, E used as scalar

The expansion rule uses certain machine registers, represented by paranmeterd so on, in
specific modes. It is required that the register representedcbytains a scalar value for the rule

to be applicable, and the expansion to be generated, and sinsilawst contain a pointer, and so

on (the remaining details of the fictional notation are not relevant to the example). Even though
we do not know exactly which concrete machine registers will be used in place ahdc when

the expansion takes place, and we do not know what happens before and after this expansion to
those registers, we can still determine some local information about the way in which the registers
are used. When the intermediate expression

scal:R3 <- array: (ptr:R5[scal:R11+40])+scal:R7

is expanded, for example, we can determine that registes used by the first instruction of the
expansion as a pointex; is used by the second instruction as a scalar, and so on. All this lo-
cal information, which results from the individual expansions, can then be written in the form of
annotations to the assembly code, and later perused in order to reconstruct the full mode informa-
tion. While this approach is not the only one possible, there are some advantages in postponing
the mode calculation in this way. First of all, the structure of the back end remains simpler, since
there is no need to embed complex mechanisms in the expansion rules in order to determine the
mode information on-the-fly. Additionally, as will be shown in the following chapter (in Section
5.3), having the local information available all at once enables us to perform easily a number of
important sanity checks on the way in which the registers are used by the compiler.

4.3 More details on reconstructing mode information

Reconstructing the mode information from the local annotations is basically a matter of perform-
ing a particular form of liveness analysis. We know the mode in which the registers are used and

4 Pointer Discovery in the Registers 39

defined at each instruction, but that information needs to be propagated to all other instructions in
order to determine when each register assumes each mode throughout the code. Before the anal-
ysis can be performed, however, there are a few other aspects that should be taken into account.
The first, important aspect, is how to deal with call instructions.

From the point of view of the analysis, what we need to obtain is information about the mode of
registers before and after the call. If the microprocessor is stopped just before the call, the registers
will be in modes that are decided by the previous instructions. If it is stopped right after the call,
however, what we will see is the effect on the registers of the execution of the whole subroutine.
In consequence of that call, certain registers might be overwritten, some will contain the return
value and some will have been used as arguments to the call. If execution is stopped while the
called subroutine is still in execution, however, the program counter will refer to a location that
belongs to a different routine, and the state of the registers will depend on the mode information
calculated for that routine rather than the one we are interested in at the moment.

The modified liveness analysis (intraprocedural, as we shall see shortly) can be performed quite
easily even in the presence of call instructions if the total effect of the called routine can be
determined statically, and the call instruction is annotated with the effects on the registers of the
call as a whole. As later shown, determining such effects statically is possible thanks to the
standard calling interface defined by the Application Binary Interface. Sest8will discuss
in more detail the handling of call instructions while performing the customised liveness analysis.

A microprocessor feature that can cause additional problems, while determining register modes,
is the use of delay slots, as previously discussed in Se8tibA The customised liveness analysis
will have to consider the way in which the instructions interact in the case in which delay slots are
used, and in particular the effect that delay slots have on the life of values in the registers. As we
shall see later, the basic idea is to reorder, from a logical point of view, the existing instructions
so that the effect on the registers can be calculated more simply. Some more work, however, will
be necessary to deal with annulled delay slots and delayed call instructions.

Chapteisis fully devoted to a rigorous analysis of the way in which the local annotations can be
used to reconstruct the mode information, and to the many details involved in dealing with delay
slots (Sectiorb.4). The mode information, once calculated, can eventually be converted in a set
of tables or similar structures (the “PC maps”), so that it can be inspected at runtime whenever a
preemptive service request is received. The operation of the runtime is discussed in 8hapter

There is a further aspect in the determination of modes in the registers. The mode information
can be determined by looking at the map associated to a single routine only for those registers
that are actually used within the routine that is being examined. For some other registers there is
no way of determining their mode using locally available data, yet the mode must be somehow
determined. That will be done, as described in the following section and more extensively in
Section8.4.1, using information related to the routines that precede the current one in the dynamic
call chain.

4 Pointer Discovery in the Registers 40

4.4 Prologue and epilogue

Up to now we have discussed the mode information in the main body of compiled routines.
The compiler, additionally, generates special portions of code before and after each routine, the
prologue and the epilogue, devoted respectively to setting up the new execution environment when
the routine is called, and restoring the previous environment before returning to the caller. The
main operations performed are modifying the stack pointer and/or the frame pointer and saving
the registers that are defined by the Application Binary Interface as preserved across calls, but
that are to be used locally by the newly called routine.

While the microprocessor is executing the prologue and the epilogue, particular care must be
taken while determining the modes of registers. As previously mentioned, not all of the informa-
tion needed to reconstruct the mode of every register will be available in the maps related to the
current routine. The mode of some registers, not actively used by the current functions, will be
the last mode that was in use in the environment of the caller. In order to clarify the situation, it
will be useful to group the user-accessible registers into the following disjoint categories:

e Call-preserved registers. These registers contain, after a call to subroutine has returned, the
same values that were present before the call.

e Registers volatile across calls. They may be used by the callee and they are not guaranteed
to have the same value upon return. This category usually includes the registers used as
arguments and as return value.

e Global registers used to store source program global variables.

e Specialised registers, handled directly by the compiler or the system.

The various categories are decided unequivocally by the Application Binary Interface for every
microprocessor, in order to guarantee code interoperability. The mode of the registers in the last
two categories does not depend on the executed code, since they are used in a fixed way throughout
the code. Using global registers to store program global variables, in particular, is rather rare,
given the necessity to maintain some sort of bookkeeping of the used registers when using separate
compilation, but it may happen. The first two categories, however, describe registers whose mode
can indeed change during execution, and in particular when a call to a subroutine is made.

The prologue and epilogue control creation and disposal of the environment needed for the
proper execution of the routine body. It is therefore their job, among others, to save and restore
registers in memory in order to adapt the specification imposed by the ABI with the use of registers
made by the body. What this means in practice is that the prologue, apart from allocating the stack
space needed for local use, will also save the content of some registers, typically on the stack, in
order to free them for use by the callee.

To be precise, the registers saved will be those that should be preserved across calls according to
the ABI, but that are reused locally by the routine body. Symmetrically, the epilogue will restore
the previously saved values before returning. The caller, on its side, will save the data contained

4 Pointer Discovery in the Registers 41

in those registers that, according to the ABI, should be volatile, but whose contents are reused by
the caller after the call. After the call the saved values can be restored into the same registers.

The mode of the registers that are volatile across calls can always be determined using locally
available information, throughout the execution of each routine. The mode of those registers that
are call-preserved, but which are saved by the prologue, can be determined locally within the
routine body but not during the execution of prologue and epilogue. Those registers refer, at the
beginning of the prologue, to the calling context and are subsequently, using one or more save
operations, made available to the callee. After the save operation the registers are “owned” by
the callee, but before that they are “owned” by the caller. That means that it is necessary to keep
track of the exact instructions in the prologue/epilogue in which each of the registers is saved or
restored. The situation is depicted in Figdrd.1

In order to determine which registers are used locally and which are not, it will be necessary
to use some sort of table or descriptor that describes the instructions at which the registers are
saved/restored. That could be done, for instance, using bitmasks (one bit for every register which
is “local” at that instruction). Alternatively, if the registers are always saved following a predeter-
mined sequence, each instruction could be associated with the highest numbered register that was
saved at that point. Other arrangements are also possible.

A simplified, slightly more conservative approach could be used considering that the saved
registers are used by the routine body but not by the prologue itself. It is therefore safe to treat
each of those registers as having the mode of the calling context during the whole prologue, even
though they are actually unused during the last part of the prologue code. The same approach
cannot always be used for the epilogue, since the values that the registers contain at the beginning

RO|R1|R2|R3|R4|R5|R6|R7
PC)
PC+1
bos > Prologue
PC+3
<
PC+4
>Body
<
~Epilogue
J

|:| _ The register mode can be determined locally
~ before the execution of the instruction at this address

Figure 4.4.1: Local registers in prologue, body and epilogue

4 Pointer Discovery in the Registers 42

of the epilogue depend on what is left there by the routine body. Those values might not be
consistent with the modes that the registers will later assume after their prior value is restored
during the execution of the epilogue.

If the only distinction of our interest is pointer/scalar, however, that simplified approach can be
safely used both in prologue and epilogue only if it is acceptable, for the service routine involved,
to misidentify random values as pointers. In the initial part of the epilogue some registers will
be unused and contain random data, but will be identified as pointers. Being unused, there is
no problem if their content is altered. In the case of a garbage collection, for instance, the only
possible effect would be potentially preventing unused blocks of memory from being reclaimed,
in case the random data happens to coincide with the value of a legal pointer to a heap block.

Another complication may derive from the use of register windows, as described in S8ctidn
When the window shifting operation is performed, some physical registers will “change position”,
and the same names will refer to entirely different registers before and after the shift. Some user-
accessible registers will suddenly have the mode that other registers had right before, while others
will become unused, and others will remain unchanged. In the case of register windows, it is
crucial to keep track of the transformation caused by the window shift, so that the correct mode
can be calculated across the renaming.

A great programmer is a seeKer of truth and beauty.
— Dave Winer

Chapter 5

Multi-mode Liveness Analysis and
Consistency Checks

5.1 Introduction

In the context of this research, it is necessary to determine where the registers are used at each
machine instruction, in optimized compiled code, as pointers or scalar values, or possibly in other
ways. The different possibilities are called “modes” (Sec8af). Each register can, at any time,

be used in just a single mode, or it can be unused.

In certain cases, extracting the liveness information, at the level of the individual machine in-
struction, from the compiler’s internals might not be a practical solution. For instance, the gener-
ation of the final code might be done, in an existing compiler, by expanding each construct in the
intermediate representation into a sequence of individual machine instructions. While the liveness
information is in general available at the level of the intermediate representation, there might be
no similar liveness information available for the single machine instructions. Tracing the life of
the individual registers for all the instructions in the expansions during the code generation would
be particularly complex, since the life of the registers could depend on the specific expansions
used throughout the program, some of which might also be the result of the execution of complex
expansion subroutines, called at compile-time.

A much simpler approach can be adopted if it is possible to determine, while the assembly
code is being generated, which registers will be used, or overwritten, in some particular modes at
each instruction. While the assembly code is generated, therefore, a series of annotations can be
generated, for instance “Register R4 is used by this instruction as a pointer”, or “Register R7 is
overwritten by this instruction with a scalar value”. Once the full code has been generated, it is
then possible to run a separate liveness analysis involving registers and machine instructions, so
that the desired liveness information can be reconstructed. Thanks to the standard calling interface
provided by the Application Binary Interface, it is possible to analyse the life of registers for each

43

5 Multi-mode Liveness Analysis and Consistency Checks 44

routine in isolation.

A separate liveness analysis is therefore performed using, as input, those annotations. The
analysis, which is intraprocedural, is “multi-mode” in the sense that each register may assume
various modes throughout the code, always one at a time. The algorithm, which will be discussed
shortly, is a fairly simple adaptation of a conventional liveness algorithm. The additional twist,
however, is that the compiler is not trusted to generate code that defines and uses registers in a
consistent manner. That is, an erroneous code generation might cause a register to be initialized as
a pointer and later used as a scalar, or initialized as a short integer and later used as a long integer.
Verifying the consistency of the generated code is particularly important if, as in our case, the
back end was heavily customised and new errors might have been inadvertently introduced.

In order to specify exactly the code consistency requirements, a number of desirable properties
are then defined. For instance, the code should use a register in the same mode in which it was
last defined. Each register should only be used after being initialized for the first time. Only if all
of the properties are respected, the code is deemed valid.

The liveness analysis is actually performed regardless of the properties being satisfied. How-
ever, once the analysis is complete, the liveness information that was generated can be used to
verify whether all the desired properties are indeed satisfied or not. In the following sections, it
will be proved that the initial definitions of the various properties are actually equivalent to much
simpler tests, which involve the (possibly meaningless) liveness information that was calculated.

As a final step, the effects of delayed control transfer are analysed. The non-trivial effects
of delay slots on the reconstruction of the mode information will be discussed, and it will be
shown how the liveness analysis can be performed in this case as well. The way in which that is
accomplished is by building an alternative representation of the original code which makes no use
of delay slots, but still sets the registers in the same modes as the original program. The previous
properties can still be verified, even if delay slots are used, and the discussion shows how the
previous tests can be adapted. The complexity of the whole analysis, and of the verifications of
the various properties, is similar to the complexity of a normal liveness analysis.

The analysis here was specifically developed as a formal justification to the algorithms which
have been used in the prototype discussed in Ch@ptebibliographic review of similar material
did not highlight a previous discussion of the same analysis, which is therefore believed to be
entirely original and presented here for the first time. Some related material, which might be of
interest, is listed below.

The annotations used in this liveness analysis are reminiscent of the type annotations used by
the Typed Assembly Language (TALYCG99]. The type system used by TAL is quite complex
and sophisticated, and includes parametric polymorphism, existential types, recursive types, and
other features. As a side effect, the type annotations can be potentially rather large in proportion
to the code size, although they can be compressed to some e3tdA0]. The structures used
by TAL are targeted to perform complex type verifications, unnecessary in this context.

The customised liveness analysis described later can be easily implemented using the much sim-
pler annotations described in this work, requiring the same polynomial time as a classic liveness
analysis. Although simpler, the structures used in this work are well suited to support preemptive
program services. The size of the annotations is not a problem in our case.

5 Multi-mode Liveness Analysis and Consistency Checks 45

Reconstructing the different modes that registers can assume has similarities with calculating
Reaching Definitions@K98, NNH99]. The main difference is that the Reaching Definitions
analysis calculates which definitions “reach” a certain point in the code, using a forward analysis.
In our case, we are also interested in determining which registers are unused at a certain point, as
well as obtaining the mode of their content. The analysis performed here is a variant of the classic
liveness analysis, and it uses a backward analysis.

According to Prof. Reinhard Wilhelm (Universitat des Saarlandes), results similar to the ones
presented here could probably be obtained, in principle, also using a form of assume-guarantee
analysis §he03, although the computational complexity of such an approach might be greater.
Zhichen Xu used annotations on machine code in order to explore the safety checking of machine
code XMROOQ]. The annotations, which refer to security conditions expressed using typestates,
are then processed to verify safety properties. That approach, according to its authoR, is however
not suitable to express liveness properties. The algorithms used in that work are not related to the
liveness analysis presented here, but the adjustments applied in order to deal with the delay slots,
required by the use of the SPARC microprocessor, are partly related to some of the mechanisms
used in Sectio.4.

5.2 Multi-mode liveness analysis

5.2.1 The context

In order to give a precise description of the analysis performed on the code, a formal representa-
tion of the program code will be introduced. The same representation will be particularly useful
later, in the section devoted to the consistency checks. As this discussion will focus on the intra-
procedural analysis, the formal representation will model the body of a compiled routine. The
term “routine” will be used, generically, to refer to any kind of procedure, method or function.

It will be assumed that a finite set of registers is available to store values, and that each regis-
ter can only be used in one of a finite set of “modes” at any time. The liveness algorithm, and
the subsequent checks, will determine the modes of the various registers throughout the code.
The various modes, for instance pointer, short integer, long integer and so on, only loosely re-
flect the high-level types used by the source code, and actually only represent the way in which
registers are used by the compiled assembly code. Such information can be useful to perform
exact garbage collections, or to perform on-the-fly endianness conversions (for instance using
double-endian microprocessors). The body of a compiled routine will be modeled as a sequence
of simple instructions that use certain registers in some modes, set some registers in some modes
and possibly transfer control to one of a statically known set of instructions contained in the same
compiled routiné:

A call to a subroutine will be modeled using a single instruction that summarises the complete
effect on the registers that the actual call has as a whole. A call instruction will therefore use

1in this chapter, the term “instructions” is used to refer to instruction occurrences; a program incrementing a register
twice, using two identical increment instructions, is still considered to be made up of two distinct instructions rather
than one, repeated twice.

5 Multi-mode Liveness Analysis and Consistency Checks 46

registers (for the arguments), set registers (return values, and overwritten volatile registers) and
transfer control to the following instruction (if the called subroutine can actually return control to
the caller). More details on this point will be given in Sectmi.8 It will also be assumed that

it is possible to determine statically the sets of registers that can be affected (read or overwritten)
by each instruction, and the modes in which those registers are used.

5.2.2 Formal definitions

A simple way to model the described structure is to use a finite set, each element of which repre-
sents a concrete instruction in the compiled subroutine, with a “successor” function to model the
sequence of instructions in the code.

Definition 5.2.1. The set of instructions is a non-empty, finite set of elements. Two elements
enter¢ | andexit ¢ | are used to represent, respectively, prologue and the epilogue of the routine,
and we also define the sdts= | U {enter}, le = | U {exit} andlpe =1, Ule. A bijective function

succ: Ip — le is used to represent the static sequence of instructions in the code. If a given
assembler instruction is represented Hpr example, the instruction that follows in the compiled
code will be represented tgucd(i). We require that, ifl,| = n, thensucd (enter) exists and

is equal toexit, so that all the elements ofe are effectively linked bysuccin a chain. The

first instruction of the routine body will be representediby = sucdenter. Additionally, an
elementnull ¢ 1pe will be used in special cases.

The definitions above model the basic static structure of the compiled routine. It is however
necessary to model the dynamic behaviour as well. First of all, it is important to formalise the
concept of “mode”. In the previous discussions, the term mode has been used to describe infor-
mally the way in which a register is used at a certain point in the code. For instance, a certain
register could be used sometimes as a pointer to data, or as a scalar value, or a pointer to code
and so on. While a more precise definition of the use of registers will be given later, the different
modes can be easily modeled using a finite, non-empty set. A special elemeséd is used
to indicate that a register is not in use. The set of registers on which the algorithm works is also
defined.

Definition 5.2.2. The set of modeM! is a non-empty, finite set of elements. Theldgtis defined
asMy = MU {unused, whereunused¢ M. The set of registerR is a non-empty, finite set of
elementsR= {ro,r1,...,rn}-

It is now time to describe the dynamic behaviour of the instructions, specifying the way in
which each instruction affects the mode of the registers and the control flow. Each instruction, as
previously mentioned, will require certain input values, with certain modes, in some registers. As
a result of the execution, some registers will possibly be altered, both in value and in mode. The
information available for every instruction is encoded by the following functions:

Definition 5.2.3. The functionusedescribes, for each instruction, the registers required and their
modes as followsuse: | x M — 2R, If a machine instruction representedigye | uses a subset

5 Multi-mode Liveness Analysis and Consistency Checks 47

of registers, represented Iy C R, with mode represented by € M, thenuse(ip,m) = R. If

io = exit, thenuserepresents the registers and their modes at the end of the routine body. Similarly,
the functiondef: I, x M — 2R represents the registers that are set in a certain mode as a result of
the execution of each instruction. When applieémber, the functiondef represents the registers
and their modes as supplied to the routine body by the prologue.

While this definition is mathematically consistent, our intuitive concept of mode requires that
each register can be used in a single mode at any point in the code (more on that later) and
such condition must be trivially verified by the definitionsdd#f and useas well. Since those
two functions are obtained from information supplied by the compiler, the condition should be
automatically verified, but it might be useful to perform a sanity check on the input data. We
require the following condition to be verified:

Condition 5.2.4. A consistent definition oflef andusemust respect the following properties:

Vi € lg: use(i,my) Nuse(i,mp) = @

Vg, mp e M,my £ mp) _
Vielp:def(i,m)Ndef(i,m) =2

We will assume the definitions afef and useto be consistent in the following discussion,
except where explicitly stated. The way in whidef and usereflect the concrete assembler
instructions is fairly intuitive for simple instructions (including branches, which on most machines
do not alter registers). The situation for call instructions, as previously mentioned, is slightly more
complex. While a call instruction causes a subroutine to be called, causing a certain cumulative
effect on the registers, the control flow will eventually return (if the called subroutine returns at all)
to the instruction following the call instruction. From the point of view of the mode analysis, the
effect of the call, as a whole, can be considered similar to that of the execution of a particular kind
of simple instruction that affects several registers at once. The execution flow, in general, appears
locally simply to step through the call instruction as it would happen for a simple instruction. It
is therefore fairly simple to handle call instructions if the subroutide’sanduseare defined so
that the cumulative effect of the called subroutine is taken into account. It is important to notice
that, even if the exact routine which is to be called is not known, the argument list is statically
known? and the general calling convention, including the list of volatile registers, is dictated
by the Application Binary Interface for the particular machine architecture. The details of those
cumulative definitions will be explained in detail later on, in Subsedi@ng

5.2.3 Dynamic control flow

Another important effect of instructions is the impact that each instruction has on the control flow.
Depending on the particular instruction, execution can continue at the instruction immediately
following, but also at a different instruction, if a branch is involved. In certain cases, an instruction
might never return (for instance, calls to certain system routines or special machine instructions).
The dynamic effect on the control flow is modeled by the functitwifow;:

2|f variadic argument lists are used, as in the C “printf”, the list of incoming arguments is not statically known to
the callee. However, the list of outgoing arguments at a particular call site is still statically known to the caller.

5 Multi-mode Liveness Analysis and Consistency Checks 48

Definition 5.2.5. If, for a given routine, instructions can transfer control to a maximumsof
distinct instructions whergs < n= |l¢|, then the functiongollow; : I, — leU {null} are defined

for eachj =0,...,n; — 1, representing the possible instruction that can follow a given one (or
null if the number of alternatives is less than— 1).

For example, ifi is an ordinary non-branching instructions, we will have tfalfowy(i) =
sucdi), whileVj =1,...,nf — 1: follow;(i) = null. If i is a conditional branch, we will define
followp(i) = sucdi), andfollow (i) to specify the branch target. If jump tables are not used, and
there are no indirect jumps, then = 2 is usually sufficient to specify the possible destinations of
all instructions (as said, we treat calls as a special case of non-branching instructions). The use of
Ip andleU {null}, respectively, as domain and codomain of the functitmibow;, represents the
fact that the prologue cannot be the destination of any control transfer instruction and that, once
the epilogue has been reached, the control flow cannot return to the routine body. We can now
begin our discussion with a few considerations and extensions on the funtibms; .

Definition 5.2.6. follow: 2're — 2're is defined as follows:

VAC lpe: follow(A)= | J {follow;(i)|j=0,...,ns —1}\ {null}
VieA\{exit}
The functionfollow represents the set of instructions that are dynamically reachable in one step
from another set of instructions.

Since the codomain ofollow is the same as its domain, the notatidioiowX, follow™ and
follow* can be used with the usual meaning. For instandedfN*™ andA C Ipe, the function
followX (A) is defined agollow*~? (follow(A)), wherefollow? (A) = A. The functionfollow*is
defined a&/A C lpe: follow™ (A) = Uyken+ followk (A) and follow* asvA C e : follow* (A) =
Uvken followk (A). An instructioni; € e is said to bereachablefrom instructionig € Ipe iff
i1 € follow* ({io}). An instruction is simply said to beeachabléef it is reachable fromrenter.

Intuitively, since we are dealing with finite sets, the functifmilow* can be calculated in a
finite time following all possible paths using any graph traversal algorithm. For completeness, an
iterative algorithm that can be used to calcultddowris briefly discussed.

Lemma 5.2.7. follow is monotonic.

Proof. Let us consideA C B C Ipe. The following relation holds:

U {followj(i)|j=0,....,ns=1}C |J {follow;(i)|j=0,...,n; —1}
VieA\{exit} VieB\ {exit}

which impliesfollow(A) C follow(B). O

Definition 5.2.8. OperatorS: (2've — 2're) — (2lre — 2lre) s defined as:

v 2lee s 2lee YA C Ipe: S(f) (A) = AU follow(f (A))

5 Multi-mode Liveness Analysis and Consistency Checks 49

A partial order is now introduced among the functiots 2> 2'ee,

Definition 5.2.9. The partial orderd on 2re — 2're js defined as:
vf,g: 2 — 2 f I g VAC Ipe: f(A) Cg(A)

The partial order, together with the set2 — 2're forms a lattice, which is finite and therefore
also complete.

Proposition 5.2.10. Operator S is monotonic over the latti¢e!, 2've — 2'pe).

Proof. Let us consider two functionk g: 2lre — 2lve sych thatf < g. We havevAC lpe: f(A) C
g(A), and consequentlyA C Ipe: AU follow(f (A)) € AU follow(g(A)) sincefollow is mono-
tonic. HenceS(f) < S(g). O

SinceSis a monotonic operator defined over a complete lattice, it has a unique least fixed point
according to Tarski’s fixed point theorem.

Proposition 5.2.11. Function follow : 2'»s — 2're is the least fixed point of operator S over
(§,2'pe — 2'Pe).

Proof. follow” is a fixed point. In fact,
VA C lpe: AU follow(follow* (A)) = follow? (A) U follow™ (A) = follow* (A)

Furthermore, for every fixed poigt we can show thatollow* < g. From the definition o8, for
every functiong : 2're — 2'ee, it is trivially

vk e N,YAC lpe: S(g) (A) = follow*(g(A))u |J follow! (A)
vje{0,...k—1}

and, ifg is a fixed pointyk € N : $(g) = g. Thereforeyk € N,VA C I, : followX (A) C g(A),
and therefore, if € follow* (A), it is alsoi € g(A), and thereforefollow* < g. Summarising,
follow* is a fixed point and, for every fixed poigt we havefollow* < g, hencefollow* is the
least fixed point. O

In order to calculateollow*, it is consequently sufficient to apply iteratively operafwver
the function that has the empty set as every value, until a fixed point is reached (which happens
in a finite number of steps, since the number of possible functions is finite).

5.2.4 Expected mode

Informally, a register € R has “expected modeth € M for instructioni € ¢ if registerr is used
with that mode by, or alternatively by any instruction that can folldwlong at least one possible
dynamic execution path, if the register is not redefined betwéieelusive) and that use of If
the condition cannot be verified for anye M, r is not expected to be in any particular mode by

5 Multi-mode Liveness Analysis and Consistency Checks 50

i. If every register is in its expected mode at every instruction, then all the instructions will find
the registers in the required modes for their execution.

The definition above allows for a register to be in multiple modes at once and does not require
those registers to be set in the correct modes by other instructions. We will later require each
use to be matched by a register definition, and each register to be in only one mode for each
instruction. Additionally, we will point out that the mode requirements can be safely ignored
for those instructions that can never be reached by the control flow. It should also be noted out
that the definition above for “expected mode” takes into account every possible execution path in
order to allow for a static analysis, and it only represents an approximation over the real, dynamic
behaviour. The intuitive and rather informal definition above can be better phrased, in formal
terms, using the functions defined so far.

Definition 5.2.12. Functionexpected le x M — 2R is defined as follows:

Vi€ lg,Vr e RVme M :

r € expectedi,m) < 3k e N: Jig,...,ik € lpe: | lo=1AT € usdix,m) A

vymeM

Vje{0,...,k—1}: <ij+1E follow ({ij})Ar¢ def(i,—,rﬂ)))

A registerr belongs toexpectedi, m) if i or a following instruction uses registein modem,
and there is no definition iinor afterwards encountered before that use. The definition summarises
the mode in which all registers are expected to be before the execution of every instruction. Other
conditions, however, must be verified before the definition above can be used on a practical level.
Since many of those conditions will be used several times, some will be given a conventional
name.

Definition 5.2.13. A routine body is “sufficient” if each register expected in a certain mode, for
any reachable instruction, is set in that mode by at least one preceding definition along every
possible execution path. Formally:

vme M,Vr € R vk e Nt : Vig,...,ik € lpe:
(io=entern (Vj € {0,....k— 1} rij;1 € follow ({ij})) A
r € expectedix,m) = 3j € {0,...,k—1} :r e def(ij,m))

If a routine body is not sufficient, some instructions might not have their registers set in the
expected mode during execution, which also means that some uninitialised registers might be
used by the program. While being sufficient is an important property of the function body, it is
also important to verify whether the various definitions along every dynamic path are coherent
with the expected mode, which is a stronger property. The following, rather intricate definition
will completely describe the desired property.

Definition 5.2.14. A routine body is “valid” if, for every instruction that sets a register, and for
every instruction that, following some execution path from the previous instruction, expects the

5 Multi-mode Liveness Analysis and Consistency Checks 51

same register to be in one given mode, the mode in which the register is set is the same in which
it is expected. Formally:

Vi € le,Yme M, Vr € expectedi,m),Vigq € follow* ({enter}) \ {exit} :

(re U def(ig,m) A3k e NT: Sig,...,ik € lpe: (io:idAi:ikA
vmeM

Vje{0,....k—1}riji1 € follow({ij}) AVje{1,...k—1}:r¢ | def(i,-,rrf))) =
r € def(ig,m) e

The above definition, apparently rather complicated, can be easily decoded as follows: if a
register is expected in a given mode, a valid definition must ensure that forig\tbat precedes
i, and which defines that register in any mode while not being followed by other definitions, the
mode in whichig sets register must be exactlyn. An alternative, simpler condition equivalent
to validity will be discussed later. The restriction on the set of possible valueg émsures that
the effect of those instructions which are in unreachable portions of the routine body are actually
ignored. While validity ensures that all register mode definitions are suitable for their successive
use, there is no guarantee that a definition exists for every use.

As an interesting observation, it should be noted that, while a valid routine body is guaranteed
to have every register used ligematched correctly by its definitions, it may actually happen
that some register mode definitions are not matched byuaayThat can happen, for instance,
if a function is passed more parameters than necessary for its execution. The extra parameters
will appear indef(enterm) but, not being used, will not appear éxpectedi s, m). Such an
occurrence is not necessarily an indication of a problem, since there might be legitimate reasons
for the presence of the additional parameters even in optimised code (for instance, backward
compatibility needs).

Another case in which some registers may appear to be defined but never used is the use of
function calls as single instructions. As described in detail in Se&i2r8 call instructions can
be considered as having an effect similar to that of single instructions. During the call, however,
some registers can have their value overwritten even if they do not return any useful information
to the caller. This overwriting can be represented aefof the corresponding registers in a
special additional mode, without any matchinge

Definition 5.2.15. A routine body is “correct” if it is both sufficient and valid.

If a routine body is correct, then every register mode definition sets the register in the mode
which is expected by the following instructions, and at least one valid mode definition is present
for every use along every execution path. Another important requirement of programs asserts that
each register must be, at any point in the program, in only one of the moded.

Definition 5.2.16. A routine body will be called “consistent” if each register is only ever used in
a single mode at each point in the code:

Vi € follow™ ({enter}),Vm,my € M, my # my : (expectedi, ;) Nexpectedi,my)) = &

5 Multi-mode Liveness Analysis and Consistency Checks 52

Proposition 5.2.17.1f a routine body is correct, it is also consistent.

Proof. Itthat were not the case, there would be anch that € expectedi,m) Nexpectedi,my),

my # mp. However, by Definition5.2.15 the function body is also valid, and by Definition
5.2.14we would require to have a mode definitions fan both modes simultaneously, that is

r € def(ig,my) Ndef(ig,m) (and we must be able to find one suglsince the body is also suf-
ficient by the definition of correctness). However, there can be no register in two different modes
in def for the same instruction because of ConditioR.4 hence the conclusion is absurd. Every
function body that is correct is therefore also consistent. O

In a program that is correct, and consequently consistent, every instruction is guaranteed to
find the values it requires set in the correct modes and each register is used, at any given time,
in a single mode. In compilers, each register is usually assigned, at every position in the code,
to a single pseudo-register, which generally ensures that a single mode is used at each point
in the code (this is the case with GCC). While it can be usually assumed that consistency, and
even correctness, are automatically satisfied in compiler-generated programs, it can be useful to
verify explicitly the relevant properties for added safety. It should be noted that Con8liioh
(consistent definition adef andusé can be in practice relaxed to take into account only reachable
instructions since unreachable instructions do not influence consistency, according to the proof to
the previous proposition.

Itis quite important to point out that both properties, correctness and consistency, are not strictly
necessary to guarantee that a program will work as intended. It is fairly easy to write a hand-coded
piece of assembly code that, despite appearing inconsistent or incorrect, still works as intended
because of the particular nature of the program logic. On the other hand, a program that is both
correct and consistent is certainly “safe” from the point of view of the static mode analysis since,
whatever the real dynamic execution path, all instructions will be supplied with all the necessary
registers in the correct mode.

5.2.5 Mode calculation

As we have seen, if a program is correct and consistent, the register modes represented by the
function expectedcan be used to describe the use of registers, and the modes in which they
can be used, in the body of the routine. In particular, in a consistent routine body, according to
Definitions5.2.12and5.2.16 each register can be expected at each reachable instruction in one
mode at most. In fact/i € follow™ ({enter}), vr € R, if 3me& M : r € expectedi,m), by Def.
5.2.16the same registers cannot appear in exgectedi, m’) with m € M;m# nt.

It is therefore possible to select the omhysuch that € expectedi, m) or the elementinused
to create, for added convenience, a functioode: I x R — My, as follows:

Definition 5.2.18. The functionmode: | x R — M, is defined on consistent routine bodies as:

5 Multi-mode Liveness Analysis and Consistency Checks 53

vYme M : (r € expectedi,m) = mod€(i,r) =m)

Vi € follow™ ter}) :
v e R i € follo ({ener}){

me M :r € expectedi,m) = mod€i,r) = unused
Vi € l¢\ follow™t ({enter}) : mod€i,r) = unused

wheremodeis well-defined, as previously shown. For all unreachable instructions, the real value
of expectechas no relevance. The functionodeis therefore conventionally set ttmused to
indicate that all unreachable instructions do not concretely require the registers to be in any par-
ticular mode.

It will now be our task to calculate the functie@xpectedand consequentlgnode algorith-
mically. From the definition oéxpectedin Definition 5.2.12 it is intuitively apparent that the
mode calculation can be performed propagating backwards, along all the possible dynamic ex-
ecution paths, the mode requirements of each instruction specified by the funsgamtil a
matching mode definition, described bgf, is encountered. In that sense the mode calculation
algorithm is simply a variant of the well-known liveness analysis that is commonly performed
during compilation, and can be shown to have similar complexity and termination properties.

In order to show hovexpectedtan be calculated iteratively, it will be useful to introduce a new
operator as follows:

Definition 5.2.19. OperatofT : (e x M — 2%) — (le x M — 2R) is defined as:

ViilexM — 2R Vi lg,Yme M,Vr €RR:

reT(f)imercuseimv|ré¢ () def(im)are |J f(@’,m)
vmeM vi’e follow({i})

OperatofT encodes the relationship between the modes expected by instructions and the modes
expected by their followers. A partial order among the functignsM — 2R is now introduced:

Definition 5.2.20. The partial ordeZ onle x M — 2R is defined as follows:

Vi, gilexM = 2R fCge (Viel,YmeM: f(i,m) Cg(i,m))

The partial orderC, together with the sef, x M — 2R, forms a lattice, which is finite and
therefore also complete. The simple functrdefined a%/i € le,Yme M : z(i,m) = &, is the
lattice bottom since C f for every functionf in the setle x M — 2R,

Proposition 5.2.21.Operator T is monotonic in the lattice defined by DefinittoR.20

Proof. Let us considerf,g: le x M — 2R such thatf C g. That mean¥’i € le,Yme M,Vr € R:
re f(i,m=reg(i,m). Letus prove thal (f) C T (g). If r € T (f)(i,m), then

reusei,mv(r¢ |J def(im)are [J f(i'’'m)

vymeM vi’e follow({i})

5 Multi-mode Liveness Analysis and Consistency Checks 54

If r € use(i,m), thenr € T (g) (i,m). Otherwiser € Uyictaiiow(yiy) f (i’,m). But each of the
setsf (i’,m) are included in the correspondiggi’, m), thereforer € Usyirc oliow((iy) 9 (i, m). Con-
sequently, in this case as wallg T (g) (i,m). Thereforevi € (I U{exit}),Yme M,Vr e R:r €
T(f)(i,m) =reT(g)(i,m), whichmeand (f) C T (g). O

SinceT is monotonic over a complete lattice, it has a unique least fixed point, according to
Tarski’s fixed point theorem. Furthermore, such a least fixed point can be obtained itdrating
over the lattice bottom. Lét be the least fixed point oF over the lattice(C, le x M — 2R). We
intend to show thalh = expected

Lemma 5.2.22.expected is a fixed point of T.

Proof. We must show thaf (expectedl= expectedBefore proceeding, it is useful to review the
complete, expanded expressionsdgpectedandT (expectedl

o Vieclg,Vme M,Vr € R if r € expectedi,m), by Def.5.2.12
Jk € N : dig,...,ik € lpe: (iozi/\reuse(ik,m)/\

vje{o,...,k—1}: (iHlefoIIow({ij})Argé U def(ij,rrf)>>

vymeM

o Viecle,Vme M,Vr e R if r € T (expectedi(i,m), by Def.5.2.19

r € use(i,m) Vv (r ¢ |J def(i,m)nre expectec@i’,m))

vYmeM vi’e follow({i})

The latter expression can be transformed in a few steps to show that it is indeed equivalent to the

former. First of all, ifr € U {r e R| p(r)} italso means thaii’ € follow({i}) : p(r).
vi'e follow({i})
Expandingexpectedi’, m), the expression can be rewritten as:

r € use(i,m) Vv (r ¢ |J def(i,m)A3i’ € follow({i}):

YmeM

Jke N:Fig,...,ik €lpe: [io=1"AT € us€ix,m) A

YmeM

vje{o,...,k—1}: <ij+1 e follow ({ij})Ar¢ def(ij,rﬁ)>))
which is trivially equivalent to the first expression. We can concludeTiiek pectefl= expected

thereforeexpecteds a fixed point forT. O

In order to show thah = expectedwe only need to show thaxpected= h. We will show
that, for every fixed poing of T, we haveexpected: g.

5 Multi-mode Liveness Analysis and Consistency Checks 55

Lemma 5.2.23.expected h.

Proof. Let us assume that< expectedi,m). According to the definition oéxpected Jiy €
followX ({i}) which satisfies € use(ix, m) and there are no definitions betweaemdiy, following
the chain described bfollow. Sincer € useg(ix, m), we know that, for every functiog: e x M —
2R we have € T (g) (i, m). If gis a fixed point, that also meang g(ix, m). From the definition
of expectedwe obtain that/j =0,....k—1:r ¢ Uyyemdef ({ij},n). Fromr € g(ix,m) and
r ¢ Uymemdef({ik-1},n), the definition of T implies thatr € T (g) (ik—1,m). Sinceg is a
fixed point,r € g(ix—1,m) and, proceeding along the sequente=0,....k:r € g(i;,m), which
also means € g(ip,m) and thereforea € g(i,m). Hence, for every fixed poing of T, it is
expectedC g, which also implieexpected_ h. O

Proposition 5.2.24.expected is the least fixed point of operator T .

Proof. Consequence of Lemnmta2.2and Lemmab.2.22 the least fixed poinh must be unique,
and sinceexpected= h andexpecteds a fixed pointexpectednust be identical tén. O

5.2.6 The mode algorithm

The previous lengthy discussion shows hexpectedcan be calculated iteratively applying re-
peatedly operatof over the function that has the empty set as every value. The following algo-
rithm fills in the values of the maps represent@gectedshown asexpbelow) usingdef, use

and follow; for everyj =0,...,nf — 1.

Algorithm 1 — Mode calculation algorithm

procedure computeMod€s

Uses: Mapdef defined onlp x M
Uses: Map usedefined ore x M
Uses: Maps follow; defined on, for everyj =0,...,ns -1
Calculates: Map expdefined ore x M
{Initialisation of exg
1: forall i € ledo
2. forall me M do
3 exp[i,m] < useli, m|
4: end for
5. end for
{Udef s precalculated}
: forallieldo
rfij — @
forall me M do
r[i] < rlijudef[i,m|
10: end for

© ® N o

5 Multi-mode Liveness Analysis and Consistency Checks 56

11: end for

12: repeat

13: allDone« true
14: foralliel do

15: forall me M do

16: f—o

17: forall jsuchthatG< j < nfdo
18: if follow; [i] # null then

19: f — fuUexp[follow;[i], m]
20: end if

21: end for

22: expl — usei,mu(f\rli])

23: if expl # expli,m| then

24: allDone« false

25: expli,m «— expl

26: end if

27: end for

28: end for

29: until allDone

A concrete implementation of the above algorithm can be easily optimised during implemen-
tation. For instance, since the propagation takes place backwards, the “for” loop in line 14 is
more efficiently performed scannihdrom the last instruction to the first (the elememit is not
processed, since it has no followers). At the end of the execugigigontains the representation
of functionexpectedfrom whichmode(if the body is consistent) can be easily determined.

5.2.7 Termination and complexity

The core of the mode calculation algorithm (Algorithm 1) is a straightforward implementation
of the operatoil. Because of the previous discussions, the algorithm always terminates finding
a unique least fixed point, which is exacttxpected As far as the complexity is concerned,
each iteration of the main loop of the algorithm must chagxqge but always monotonically. The
number of possible maps j&| x [M| x |2R\, therefore the number of iterations must be lower
than that value. During each iteration, the number of operations is proportiopaktiM| x ng,
therefore the algorithm, in the worst case, has maximum time comp@étyf), since we can
consider the setsl andR as constant for a given architecture, and< |l,| (and|l,| = |I|+1).
Notably, if no jump tables are used, there are only two possible followers for each instruction and
the maximum complexity drops © (|| |2>.

It is important to point out that, despite the maximum complexity, the maximum length of a typ-
ical routine body is limited by practical reasons. In any programming language, extremely long
subroutines tend to be quite rare, because of the inherent difficulty in writing and maintaining

5 Multi-mode Liveness Analysis and Consistency Checks 57

them. An exception would be automatically generated code. In practical terms, the time required
for the algorithm execution in the test implementation, on the test programs tried, has been ex-
tremely modest. By comparison, the worst case time complexity of a general liveness analysis
is O(N*), whereN is the size of the program, since it is assumed that there could be Np to
possible variables (one variable defined at every instruction).

As far as space complexity is concerned, the only significant space is used by the maps used as
arguments, or the map used ®tpectedThe use of the temporary mapequires spac®(|l|),
but the algorithm could be easily changed to run in constant space, calculating the elements of
(Jdefin the main loop as necessary.

5.2.8 The effect of calls

As previously mentioned, each call instruction can be treated as a single instruction, from the
point of view of the local mode analysis. The rationale behind this possibility, and the way in
which registers are used across calls, will now be discussed.

In general, when a routine is invoked, by means of a call instruction, some registers will be used
according to specific conventions depending on the specific function called. Certain registers will
be needed by the callee to store some of the incoming parameters, and some registers will be
set as return values. Some registers will not be preserved unchanged by the callee while others
could be used to store temporary values, overwriting the previous content, and those registers will
have no any meaningful value for the caller upon return. If it is necessary to deal with arbitrary
routines hand-coded in assembler language, determining the way in which each register is used
might require a detailed inspection of the called routine and, if other routines are in turn called, a
complex inter-procedural analysis.

In modern computer systems, however, every routine, regardless of whether it is automatically
generated by a compiler or hand-coded, is expected to conform, for any specific microprocessor
architecture, to a set of detailed specifications known as Application Binary Interface (ABI). The
ABI, defining a uniform coding standard and standard calling conventions, ensures full interop-
erability among code generated using different tools, so that libraries, system routines and user
code can freely call each other. In particular, the ABI for a specific architecture usually defines
which registers are used to store incoming parameters, which the return values, which registers
must be preserved unchanged across function calls and which are assumed to be volatile, and can
be freely overwritten.

As a consequence, all the information about the use of registers can be determined by ana-
lysing the caller code in isolation. The number, order and mode of arguments, and the mode of
the return values can be determined if the signature of the called function is available, while the
distinction between volatile and preserved registers is made by the ABI, and is valid for every
routine. A small diagram, representing an example situation, may help to clarify the use of the
various registers.

In the chosen example, shown in Figsel.l, all routines can overwrite, according to the
ABI, registers r0...r4, while they must preserve the remaining registers. From the signature, we
know that registers r0...r3 are user as arguments, and rO contains, after the call, the return value.

5 Multi-mode Liveness Analysis and Consistency Checks 58

Using such information, it is possible to consider the effect of the call, from the point of view
of the mode analysis, as equivalent to the effect of a single pseudo-instruction, which does not
change the control flow and which uses registers r0 and r3 as integers, uses registers rl and r2 as
pointers, returns an integer value in rO and may overwrite with some unknown values the content
of rl...r4. Crucially, all the necessary information can be obtained without inspecting the actual
function that is being called. The equivalent pseudo-instruction can then be used, without further
complications, in the mode analysis as any other simple instruction.

Quite interesting is the treatment reserved to

those registers which can be overwritten by the o g i

callee, but which do not contain any useful in- vy

formation when the called function returns. It o X i .

is necessary to mark them as possibly overwrit- 1011263 m__i_r4 PO

may be
overerinen

ten, while asserting that they are not in any of thig Xintptr.ptrint 222

A
L

modes normally used for the registers. The go:a({'l:x(ro’r1 203 | OALLX
can be easily accomplished by adding to the pre- %
existing set of modell, one new modeolatile, V
with volatile ¢ M,.. The fact that volatile regis- 7
ters can be overwritten is then simply described 0

by adding those registers to a néef (i, volatile).
Such a definition cannot match amge yet it Figure 5.2.1 : Cumulative effect of calls
obscures previous register mode definitions from
other instructions.

If i is the call instruction in the example above, afidvas originally{int, pointer}, the def
andusefunctions of the equivalent pseudo-instructiowill become:

use(i’,int) = {r0,r3} ; def(i’,int) = {r0}
use(i’, pointer) = {r1,r2} ; def(i’,pointey = o
use(i’,volatile) = @ ; def(i’,volatile) = {rl,r2,r3,r4}

Similar considerations also apply if the call instruction makes use of delay slots, as will be
discussed later in Subsectibr.7.5

5.3 Sanity checks

5.3.1 Additional checks

It is generally quite important to verify whether a function body, processed with the mode calcu-

lation algorithm, is consistent or correct. While the test for consistency is quite simple, according

to Definition5.2.16 verifying whether a function body is correct, referring to DefinittoB.15 is

not particularly easy. It may be quite useful, therefore, to devise an alternative test that can offer
us similar information.

5 Multi-mode Liveness Analysis and Consistency Checks 59

Condition 5.3.1.
Vmy,mp € Mmy # mp Vi € 1, Vit € follow({i}) : def(i,m) Nexpectedis,mp) = &

Using a few lemmas, it will be possible to show that the simple Cond#&i@ilis actually
equivalent to validity, by rewriting and successively simplifying Definit®2.14 The trans-
formation is somewhat complex, however, and requires some preliminary work. To simplify the
notation, we will defind, asfollow* ({enter})\ {exit}, and slightly modify the original definition
of validity to obtain the following equivalent expression:

Vi € le,Yme M,Vr € R: r € expectedi,m) = <Vid el

(re U def(ig,m)A3ke NT : Jig,...,ik € lpe: (io:idAi:ikA
vmeM

Vje{0,....k—1}riji1 € follow({ij}) AVje{1,...k—1}:r¢ | def(i,-,rrf))) =

vymeM

r edef(id,m)>

In order to simplify the next stages of the transformation, the following lemma will be useful.

Lemma5.3.2.Vig € l;,Vr e RYme M :
<3i €le: (r € expectedi,m) A3k e Nt : ig,...,ix € lpe: (io_id/\i =ik

Vje{0,....k—1}rijpa € follow({ij}) AVje{1,....k—1}:r ¢ | def(iwﬂ))) &
vymeM

re U expectedit, m)
Vit e follow({ig})

Proof. Expanding the definition aéxpectedi, m), the first part of the double implication above
can be rewritten as:

diele: <<3keN:3io,...,ikelpe: (ioiAreuse(iu,m)/\
vmeMm
<<3keN+:3io,...,ikelpe: (io:idAi:ikA

je{0,....k=1}rijig € follow({ij}) AVje{l,....k—=1}:r¢ | def(ij,rrf)))))

vm'eM

Vje{0,....k—1}tij1 € follow({ij}) AVj€{0,....k—1}:r¢ [def(i,-,rrf))) A

5 Multi-mode Liveness Analysis and Consistency Checks 60

The two large subexpressions are similar, and can be combined. Since the gymaléady
used in the first subexpression, the quantificafiba N*will be renamed a3q e N*. The simbols
io,...,ik will be renamed ag, . .., iy in the second part.

Jdiele: ((erN:Eio,...,ikelpe: (io:iAreuse(iu,m)/\

Vje{0,....k—1}ijya1 € follow({ij}) AVje{0,....k=1}:r ¢ [def(i,-,n’())) A

vYm'eM

<<3qu+:3i6,...,i’ € lpe: (i{):id/\i:ia/\
je{0,....q-1}:il, € fo||ow({i;})wj e{l,....a-1}:r¢ | def(i,—,rrf)))))
vm'eM

Now we defin’ = k+ q— 1 and a single sequeneg...,z. as follows:
=i,z 1=iq=i=lo,....Zq1k1 =2 =k
which also means thag = i} € follow({iq}). We obtain the following combined expression:
diele: <<3k’ eN:3z,...,7¢ €lpe:zo € follow({ig}) AT € use(ze,m) A
Vje{0,....K -1} : zj41 € follow({z;}) AVje{0,....K -1} :r ¢ [def(zj,n’{)>>

vm'eM

Which is also equivalent, using the definitionexfpectedto:
Ji € le,IK € N* - (i e followX ({ig}) A i € follow({ig}) :r € expecte(dif,m)>

and also to:

Ji€le:i e follow' ({ig}) Ar € J expectedis,m)
Vi¢efollow({ig})

In this last expression, the conditiahe I : i € follow™ ({ig}) is true if and only ifdi €l : i €
follow({ig}): if there exists an element which can be reached in a certain number of steps, there
is for certain an intermediate element that can be reached in a single step.

The large union set is empty if there are no followersqof Thereforer U...implies that
there is at least one follower. The conditiBhe I : i € follow' ({ig}) is therefore superfluous,
and the large initial expression can be ultimately reduced to:

re J expectedis,m)
Vit e follow({ig})

which proves the lemma. O

5 Multi-mode Liveness Analysis and Consistency Checks 61

Lemma 5.3.3. The expression
Vi € le,Yme M,Vr € R:r € expectedi,m) = <Vid el

(I’E U def(id,n’()/\HKEN+Zﬂio,...,ik€|pel (ioZid/\i:ik/\
vymeM

Vje{0,....k=1}rijpa € follow({ij}) AVje{1,....k=1}:r¢ [def(i,-,nY))) =
vymeM

redef(id,m)>

is equivalent to

Vmg,mp € M,my # mp, Vi € |, Vit € follow({i}) :
def(i,m) Nnexpectel(is,m) = @

Proof. To simplify the notation, let us define a few auxiliary expressions as follows:
Y (ig,i,r,m) < 3ke Nt :3ig,..., ik € lpe: <io: ig AT =ikA

Vije {0,...,k—1}2ij+1€ f0||0W({ij})/\Vj E{l,...,k—l}ll’% U def(i,-,rd))
vm'eM

Z(ig,r) < re | def(ig,m)
vmeM
X(id7i7r7m) < Y(id7iar7m)/\z(id7r>

The first expression of the lemma can now be rewritten simply as:

Yme M,Vr e RVi € lg:
r € expectedi,m) = (Vig € I : (X (ig,i,r,m) =r € def(ig,m)))

Rewriting the implications and moving the quantifiers, we also obtain the following equivalent
expressions:

vyme M,Vr e RVi € lg:
(Vig € Iy : (X (ig,i,r,m) =r € def(ig,m))) Vr ¢ expectedi, m)

vYme M,vr e RVi € lg:
(Vig € Iy : (r e def(ig,m) v =X (ig,i,r,m))) Vr ¢ expectedi,m)

vyme M,Vr e RVi € lg,Vig € Iy :
(r e def(ig,m) Vv —=X(ig,i,r,m)Vvr ¢ expectedi,m))

5 Multi-mode Liveness Analysis and Consistency Checks 62

vyme M,Vr e RVig e l;,Vielg:
(r e def(ig,m) V=Y (ig,i,r,m) VvV =Z(ig,r) Vr ¢ expectedi,m))

vme M,Vr e RVig € l;,Vi € lg:
(r edef(ig,m) Vv —=Z(ig,r) Vv (=Y (ig,i,r,m) vV —r € expectedi,m)))

Yme M, Vr e RVig el :
(r e def(ig,m) Vv —=Z(ig,r) VVi € le: (=Y (ig,i,r,m) V —r € expectedi,m)))

Yme M,Vr e RVig €l :
(r edef(ig,m)V—Z(ig,r)v—di €le: (Y (ig,i,r,m) Ar € expectedi,m)))

vYme M,Vr € RVig € I, :
(r edef(ig,m)Vv—(Z(ig,r) Adi € le: (Y (ig,i,r,m) AT € expectedi,m))))

Yme M, Vr e RVig el :
((Z(ig,r)ATi €le: (Y (ig,i,r,m) Ar € expectedi,m))) = r € def(ig,m))

We can now use Lemnt&a3.2 obtaining:

vyme M,Vr e RVigel,:

((r € |J def(ig,m)Are U expecte(uif,m)) =r edef(id,m))

vmeMm Vitefollow({ig})

In this last expression, if € def(ig, m) the implication is automatically verified. However, if
r € def(ig, M), with m = m', we know from Conditiorb.2.4thatr ¢ def(ig,m), which would
invalidate the implication if € Uy, e ollow({is}) €XPECtedia, m) were also true. Consequently,
this last condition must be false for the implication to be true. Hence:

Ymy,mp € M, my #£ mp,Vr € RVig € 1, :

(r ¢ def(ig,m) Vr ¢ U expected(id,mz))

Vit efollow({ig})

which is ultimately equivalent to:

Vm, mp € M,my # mp, Vi € |, Vit € follow({i}) :
def(i,m) Nexpectedis,mp) = @

Proposition 5.3.4. Function body validity is equivalent to Conditi&n3.1

Vm, mp € M,my # mp, Vi € |, Vis € follow({i}) :
def(i,m) Nexpectedis,mp) = @

5 Multi-mode Liveness Analysis and Consistency Checks 63

Proof. Immediate consequence of Lemi®i&.3 O

Checking the simple ConditioB.3.1 we can easily verify that the function body is valid. To
verify correctness, we only need to check whether the body is also sufficient. However, imple-
menting the test described by Definitibr2.13is quite complicated, and a simpler test would be
preferable. We will shortly see how to verify the same condition with less effort.

Condition 5.3.5. Each register that is expected in a given mode in the first instruction of the body
must be supplied in that mode by the prologue:

VYme M : expectedifirst, m) C def(enterm)

Condition5.3.5must be verified in any case. We will now show that it also allows us to deter-
mine in an easy manner whether a function body is sufficient or not.

Proposition 5.3.6. Condition5.3.5is equivalent to sufficiency:

vme M : expectediist, m) C def(enterm)

is equivalent to:

vme M, Vr e Rvke NT: (ip =entern (Vj € {0,...,k—1} :ij1 € follow ({ij})) A
r € expectedix,m) = 3j € {0,...,.k—1} :r e def(i;,m))

Proof. First of all, let us show that Conditio.3.5implies sufficiency. Ad absurdum, let Condi-
tion5.3.5be true but, for a particulane M, r € R, (io, ..., ik) € |ggl we have that € expectedix, m)
andvj € {0,....,k—1}:r ¢ def(ij,m). We know thai s € follow({enter}) and, from the def-
inition of expectedit is trivial to show that it must also bec expectedifist,m). Thereis any €
followd ({ix}), for someg, that uses in modembut, at the same timg, € follow%~2 ({ifs })and
there is ndy betweeri si;s; andiy, for whichr € def(ix, m).

Since Conditiorb.3.5holds, however, we must also have def(enterm). But then theras a
j such thar € def(ij, m), sinceig is actuallyenter. We reach a contradiction, which shows that
Condition5.3.5implies sufficiency.

Now let us show that sufficiency implies Conditiér8.5 If the routine body is sufficient, and
r € expectedifirst, M), then we know, sincesrst € follow ({enter}), that3j € {0,...,.k—1}:
r € def(ij,m), wherek is 1. But the only possible value fgris zero, which means thate
def(enterm). O

Thanks to PropositioB.3.6and to Propositiors.3.4 we have a straightforward way to test a
routine body for several different conditions.

Proposition 5.3.7. If a routine body respects the two following properties:

Yme M : expectedifirst, m) C def(enterm)

5 Multi-mode Liveness Analysis and Consistency Checks 64

Vmy,mp € Mymy # mp, Vi € I, Vig € follow({i}) : def(i,my) Nexpectedit,mp) = @

then it is correct, consistent, valid and sufficient.

Proof. As seen, the first property satisfies ConditB.5 which in turn satisfies sufficiency by
Proposition5.3.6 The second property is equivalent to validity by ProposiioB.4 Finally,
if the function body is both sufficient and valid, by Definiti&2.15it is also correct and, by
Proposition5.2.17 consistent. O

The following section will describe an algorithm capable of determining whether the properties
listed in Propositiorb.3.7are satisfied.

5.3.2 Implementation

The following algorithm implements all the tests described by Propositi8ry, and can be run

after the calculation oéxp performed by Algorithm 1. Additionally, Conditiob.2.4is also
checked (limitedly to reachable instructions, as explained in the discussion following Proposition
5.2.1%.

Algorithm 2 —Verification of routine body properties

procedure verifyAll()

Uses: Map usedefined orle x M
Uses: Map def defined onlp, x M
Uses: Map expdefined ore x M
Uses: Maps follow; defined ori,, for everyj =0,...,n — 1
1: reach«— &
{Storesl; in reacht
2: computeReachablenter)
3: forall m € M do
4: if explifirst,] € defi,my] then {Check sufficiency}
5 error
6. endif
7. forall mpe M, m # mp do
8: for all i € reachdo
9: if i # exitthen {Checkdefandusg
10: if def[i,m]ndef[i,my] # @ then

11 error

12: end if

13: end if

14: if i # enterthen

15: if useli,] Nusei, mp] # @ then

5 Multi-mode Liveness Analysis and Consistency Checks 65

16: error
17: end if
18: end if
{Check validity}
19: if i # exitthen
20: for all j suchthat (< j < n; do
21 if follow; [i] # null then
22: if def[i,m] Nexp[follow; [i],mp] # @ then
23: error
24: end if
25: end if
26: end for
27: end if
28: end for
29: end for
30: end for

procedure computeReachab(g

Uses: Maps follow; defined ori, for everyj =0,...,nf -1
Uses: Set of instructionseach

Calculates: Adds toreachall the instr. reachable fromn

1: if i # null then
2. if i ¢ reachthen

3: reach— reachU{i}

4: if i # exitthen

5: forall jsuchthatG< j < nfdo
6: computeReachab(dollow; i])
7 end for

8: end if

9: endif

10: end if

The time complexity of the above algorithm is actually lower than the complexity of Algo-
rithm 1. The time required to calculateachis O(|l| x n¢). The main checks require time

O(max(|M| < [R[,|IM|? x |I] x m)). Assuming thatM| and |R| are fixed and constant for a
given architecture, and knowing that can be potentially as large d, the verification algorithm

requires timeO &I ? According t05.3.7, if the algorithm terminates without error, it ensures
that the routine body is correct, consistent, valid and sufficient. Additionally, it also ensures that
the definitions oflef anduseare consistent, as far as reachable instructions are concerned.

5 Multi-mode Liveness Analysis and Consistency Checks 66

5.4 Delay slots elimination

While the described algorithm is sufficiently general for many of the major machine architectures,
a few microprocessors might require a particular treatment. The SPARC, for instance, uses a
feature known as Delayed Control Transf€pp92. The idea is that, when a branch or call is
encountered, one additional instruction is executed before the control flow continues at the target
of the control transfer instruction. The position occupied by such additional instruction is known
as the “delay slot”.

If delay slots are used, the peculiar behaviour of the control flow can no longer be described
by the formal model that was used to describe the mode calculation algorithm. However, as we
shall see in this section, it is still possible to obtain, from a routine description in which delay
slots are used, a description of a routine body functionally equivalent in which delay slots are no
longer present. The resulting transformed representation can then be used once again to perform
the mode calculation and the sanity checks using the algorithms previously described.

In the following discussion, it will be assumed that some of the instructions present in a rou-
tine body can make use of delay slots. The description will be rather generic, and not tied to
any particular microprocessor, but the SPARC will be sometimes used for illustration. For the
more obscure details of the Delayed Control Transfer mechanism, it may be useful to refer to the
SPARC manuals.

5.4.1 A model for delay slots

In order to simplify the discussion, it will be assumed that there are only two possible followers
for every instruction iy = 2), and indirect jumps are not used. Extending the discussion to
multiple followers is fairly straightforward. In order to describe delay slots and proceed with the
transformation of the routine body, a formal notation will be used to categorize instructions in
groups, in order to distinguish the various effects of the delay slots. Similarly, the presence of a
delay slot for every instruction will be described.

Definition 5.4.1. The set of instruction types i§ = {simplecond uncondcall}. The set of
instruction delays i = {nodelaydelayedannul}. An element from each of the two sets is
assigned to each instruction using the two functiyee: | — T anddelay: | — D.

The meaning of the elements fis the following:

e if type(i) = simplethe instruction is a plain instruction that does not alter the control flow

e if type(i) = condthe instruction is a conditional branch; execution might continue to the
branch target or continue undisturbed

e if type(i) = uncondthe instruction is an unconditional branch; execution continues to the
branch target

e if type(i) = call the instruction is a call instruction; execution continues to the subroutine
and will return later

5 Multi-mode Liveness Analysis and Consistency Checks 67

If the compiler determines that a call to subroutine never returns, the corresponding call instruc-
tion can be treated, for mode calculation purposes, as an unconditional branghvwdich uses
certain registers in certain modes. The elemeni3 béve the following meaning:

e if delay(i) = nodelaythe instruction does not use a delay slot
e if delay(i) = delayedthe instruction is a control transfer instruction that uses a delay slot

e if delay(i) = annulthe instruction has a delay slot, but, as described below, the instruction
in the delay slot is sometimes ignored

The conditionannulis used to describe the case in which the instruction in the delay slot is exe-
cuted if a conditional branch is taken, but ignored if the conditional branch is not taken. This fea-
ture, present in the SPARC for instance, can be used to implement simple if-then-else sequences
with just a single branch (more details later). It should be noted that not all of the combina-
tions are, in general, meaningful, and it could be useful to detect the illegal combinations with an
explicit verification, as it will be explained in the following section.

The way in which the functionsollow; are used also depends on the instruction type, as fol-
lows:

o if type(i) € {simplecall} then followg (i) = sucq(i) and follow; (i) = null;

e if type(i) = condthen followg (i) = sucq(i) and follow, (i) = i, wherei; is the represen-
tation of the instruction which is the target of the conditional branch (possitity,

e if type(i) = uncondthenfollowg (i) = null and follow (i) = it, wherei; is the representa-
tion of the instruction which is the target of the unconditional branch (possitily

The values offollow;, in the case of branches, are chosen so tblibw is the next instruction

if the branch is not taken, anfibllow; is the next instruction if the branch is taken. If delay slots
are used, the the functiodief, use followy and follow; do not describe the effects on registers
and control flow of the various instructions in a manner that is of any use to the mode calculation
algorithm, since the branch targets are not followed immediately but in a deferred way. In order
to determine what exactly happens to registers, a custom algorithm will create, from the functions
def, use followp and follows, the functionsdef’, usé, follow;, and follow}, eliminating along

the way the effect of the delay slots while preserving the overall effect on the registers of the
original program, and of course the same sequence of instructions.

5.4.2 Conditions on delay slots

Not every possible combination foype follow; anddelayis legal. Due to the particular be-
haviour of the delay slot mechanism, which we are trying to model formally, certain restrictions
or difficulties will need to be analysed with a bit of care.

5 Multi-mode Liveness Analysis and Consistency Checks 68

5.4.2.1 Delay slots as branch targets

As previously mentioned, the instruction in the delay slot is actually executed before the new value
of the program counter, specified by the branch instruction, is actually followed. A particular issue

arises when the control flow can enter the instruction sequence directly with the instruction in the
delay slot. That could happen if a branch instruction, located somewhere in the same routine
body, has as its target the instruction in the delay slot of some other instruction.

Figure5.4.1shows the two, and unrelated, pos-
sible execution paths that can traverse the instruc- ... 3
. . . e . i v o 0
tion in the delay slot. The first possibility in- %} 57 5" i, |
volvesi, andiy, theni, is executed before the i:: mov 2*02 - 1z T
is;: mov 6, %0
branch is taken, and execution then continues with =

ix. The second possibility involves a jump from

some other location t; execution then contin- rigure 5.4.1 : Delay slot used as branch target

ues withiz and the following instructions. The

presence of two distinct and unrelated paths, however, presents a potential problems regarding
the calculation of register contents before the execution of instrugtionhe way in which the
various registers are expected before the executignvaduld depend on the alternative followed,

and it would be necessary to maintain the two values of a functioreklpectedn the two cases.

In the case of the SPARC, one of the internal registers, named nPC, contains at any given
moment the value of the program counter at which the execution will continue after the current
instruction. It is therefore possible to establish which of the two alternatives is being followed at
any given moment by verifying the current value of nPC. However, it is still necessary to maintain
two possible entries for the instruction in the delay slot.

The issue is not present if the instruction in the delay slot is never a target of a branch within
the body. In that case, the instruction in the delay slot is always executed as part of the branch,
and there is no ambiguity. In practice, if an instruction in a delay slot is a target of a branch,
it means that the compiler managed to perform a rather complex optimisation, transferring one
of the instructions that precede logically the branch in the delay slot, while at the same time
discovering that the same instruction can be used following a completely different execution path,
consolidating the two in a single machine instruction and calculating correctly all the possible
effects of such an instruction combination.

Unsurprisingly, GCC appears not to perform this peculiar kind of optimisation, at least accord-
ing to the tests performed in the context of this research. The delay slot elimination algorithm that
will be described later relies on delay slots to be used in a single execution path. No delay slots,
therefore, can be the target of a branch instruction. In formal terms, the following condition must
be verified as a precondition to the algorithm:

Condition 5.4.2. No delay slot can be the target of a branch instruction:

Vip € | : delay(ip) # nodelay= ($i; € 1 : follow, (i1) = sucqip))

5 Multi-mode Liveness Analysis and Consistency Checks 69

5.4.2.2 Control Transfer Instructions in delay slots

One additional issue related to delay slots is the microprocessor behaviour in case a control trans-
fer instruction (a branch or a call) is present in the delay slot of another instruction. Such a
combination is referred to in the SPARC architecture manual as a “DCTI couple” (Delayed Con-
trol Transfer Instruction couple), and can cause the control flow to follow a quite complex path
depending on the use of annulled delays and whether the branches are taken or not. While the var-
ious cases are documented in the specific case of the SPARC (with a behaviour sometimes listed
as “unpredictable”), there is very little generality to it, since the specific behaviour depends on
the internal implementation of the specific microprocessor architecture considered. Furthermore,
the complexity of the various cases make the DCTI couple practically unusable in automatically
generated code. In order to maintain the generality of the delay slot elimination algorithm and
to simplify the description, it will be assumed that only simple instructions can appear in delay
slots. The property is verified in the code generated by GCC, since only non-delayed instructions
are eligible for use in a delay slot. Formally:

Condition 5.4.3. Only simple instructions can be used in delay slots.

Vi € 1,sucd(i) # exit: delay(i) # nodelay=- type(sucd(i)) = simple

5.4.2.3 Last instruction in the routine body

To complete the cases, it will also be required that the last instruction in the body is not a delayed
instruction. That would otherwise cause the first instruction following the routine body (which is
unknown in this model) to be executed as part of the body. That is, the instruction represented
by exit would be executed before the branch/call instruction. The following condition, therefore,
must also be verified:

Condition 5.4.4. The last instruction of the body must not be delayed:

delay(succ* (exit)) = nodelay

5.4.2.4 Possible uses of delay slots

Finally, we will require that only branches or calls can have delay slots, and that calls do not use
annulled delays.

Condition 5.4.5. A simple instruction cannot be delayed. Calls cannot use annulled delays.
Vi el :type(i) = simple=- delay(i) = nodelay

Vi el :type(i) = call = delay(i) # annul

As an additional note, we will assume that the only side effect of a branch or call instruction that
is actually delayed is the late modification of the value of the program counter. Tests and possible
side effects on registers are still assumed to take place when the branch instruction is encountered

5 Multi-mode Liveness Analysis and Consistency Checks 70

during execution. Consequently, for instance, if the branch tests the state of a certain register and
the instruction in the delay slot alters the same register, the latter instruction is assumed not to
have any effect on the branch decision.

5.4.3 A few examples

Let us see how the representation just introduced can be used to describe some common cases
involving the use of delay slots.

5.4.3.1 Unconditional branch

In the example represented in Fig&d.2 instructioniy is a delayed unconditional branch. When
the execution flow reaches, the address of the branch target is just fetched, but not immedi-
ately followed. The control flow reaches théen the instruction in the delay slot. Only after
the execution of;, is complete, the branch target is followed. In this cagege(i;) = uncond
anddelay(i1) = delayed Sinceis is an unconditional branch, initialljollowg (i1) = null and
follows (i1) = ix. The instruction in the delay slotp, is a regular instruction, stype(i;) =
simple delay(i») = nodelay followp (i2) = i3 and follow; (i) = null.

The mode calculation algorithm cannot be di- ;
rectly applied to this code fragment, because the
functionsfollow; do not reflect the real behaviour 3o 7% 5+ %" .
of the control flow. However, it is possible to de- i,: mov 4, %01 i, 1y
scribe the real behaviour defining the functions *#* ™°V ©/%°2 1

fO||OV\/J- as follows:

Figure 5.4.2 : Unconditional branch

follow] (i1) = null, because the branch does not have immediate effect

follow; (i1) = iz, since execution continues with the instruction in the delay slot

follow] (i2) = ix, describing that, after the delay slot, execution continues at the branch
target

follow; (i2) = null, since the branch is unconditional

Using follovx/j in place offollow;, it is now possible to proceed with the usual mode calculation.
If a conditional branch were used, rather than an unconditional branch, the only difference would
have beerfollow (i2) = i3, in order to describe the alternative in case the branch is not taken.

5 Multi-mode Liveness Analysis and Consistency Checks 71

5.4.3.2 Annulled, branch always

Let us consider the case of an unconditional branch (branch always) in which the instruction in
the delay slot is annulledl. The instruction in the delay slot is fetched by the microprocessor
but not executed, and execution continues with the instruction specified as the branch target. A
delayed “branch always” instruction, flagged as “annulled”, is therefore mostly equivalent to a
non-delayed unconditional branch, but the control flow can actually reach the instruction in the
delay slot, which behaves as a no-operation. Consequéotlw/j will be calculated in exactly

the same way as the case above. Howews,i», m) = @ anddef (i,,m) = &, to indicate that

the instruction in the delay slot has no effect.

5.4.3.3 Annulled, conditional branch

According to the SPARC specifications, in the case of conditional delayed branches in which the
delay slot is annulled, the instruction in the delay slot is ignored if the branch is not taken. For
instance, in the example represented in Figu#de3 the control flow reaches instructiog) which
is an “annulled” delayed conditional branch.

The branch targety, is discovered by the mi-
croprocessor but, since the branch is delayed, con- i

trol is passed to the following instruction. In- RS i,
structioni, is now fetched but, before execution, ij Ei: 2 ;OO 1 »
the branch test is checked. If the branch is taken;,: mov 4,301 i, |l B
theni, is executed normally and execution con-*s* ™V 6 %02 s

tinues withiy. If, conversely, the branch is not v

taken, thern, is ignored, and control passes to the
following instruction,iz. Annulled delay slots,
when used with conditional branches, can be use
to create very compact implementations of small if-then-else control structures, for instance when
i is one of the two alternatives to be executed as a result of the test. Although the situation is a
little more complex than the previous cases, rearrangahigw; is still fairly easy, following the
following scheme:

d:igure 5.4.3: Conditional branch, annul

e follow; (i1) = i2, since execution continues with the instruction in the delay slot

e follow (i1) = i3, because, if the delay slot is annulled, execution virtually continues with
the following instructiof

3The SPARC also allows a “Branch Never” unconditional instruction, which does nothing. If such an instruction
is flagged as “annulled”, the instruction in the delay slot is always ignored, and the execution continues with the
following instruction. That instruction can be easily transformed, for the purposes of the mode analysis, in a non-
delayed unconditional branch (always) instruction that skips the instruction in the delay slot. This case is not considered
in the delay slot elimination algorithm, described later, since the usefulness of such an instruction is extremely limited.

4To be entirely accuratefoIIOV\/j should be set tp in both cases, and then, using some special mechanism, the fact
that the instruction in the delay slot is sometimes ignored should be somehow represented. However, the desired result
of the rearrangement is the ability to calculate the expected modes before every instruction, using the mode calculation
algorithm. In this respect, the proposed calculatiorﬁojfow’j is entirely consistent with the intended result.

5 Multi-mode Liveness Analysis and Consistency Checks 72

o follow; (i2) = iy, after the delay slot, execution continues at the branch target

e follow; (i2) = null, if the instruction was executed, then the branch is certainly taken

5.4.4 Delayed calls

So far, the cases of branches and annulled branches have been described. As seen, the functions
foIIovx/j can be easily constructed from the correspondinigow; so that the delayed execution
of branches is taken into account. In the case of calls, however, the situation is considerably more
complex.

Section5.2.8explained the reasons why a call

| instruction can be considered to have an effect
e i similar to that of a simple instruction, as far as the
Tot mov 2,%00 uselitim) |7 mode calculation is concerned. The idea is that a
i,: call i, ! L , . . .
i,: mov 4,%ol U I » 1. call invocation “uses” some registers (as param-
133 mov 6, %02 13 f eters), performs some operations, and returns to
the instruction following the call, after “defining”

some registers (either return values or overwrit-
. ing them with some unknown values). The over-
Figure 5.4.4: Delayed call all effect of the call on registers is therefore sim-
ilar to that of a single instruction.
If delay slots are involved, however, execution actually returns to the instruction following the
one that is in the delay slot. Furthermore, since the jump to the called subroutine is performed in
a delayed fashion, the call instruction itself appears, during execution, not to have any immediate

effect. The diagram in Figure.4.4will be useful to explain what exactly happens.

1. The control flow reacheg, which uses certain registers, defines other registers and passes
control toi;.

2. The microprocessor executes instructipnwhich is a delayed call. The microprocessor
detects that the target ig, but wants to execute one further instruction before jumping.
Crucially, at this stage no register is actually altered. Control passgs to

3. Instructioniy is executed normally, affecting the registers accordingléd(i»,m) and
use(iz, m) for everym. After the execution ofy, the microprocessor jumps iQ. The
subroutine is executed, causing the registers to be modified accorddef fia,m) and
use(i1, m) for everym, the callee returns and control is passed to instruégon

4. Instructioniz is executed normally.

To calculatedef’, usé and thefollow;, in order to obtain a description of the effect that an equiv-
alent program would have if delay slots were not used, it is therefore necessargéf’ $et m)

5 Multi-mode Liveness Analysis and Consistency Checks 73

andusé (i, m) to the combined effect tha andi; would have, in that order. The equivalent re-
sultis shown in Figur®&.4.5 In particular, it should be noted that some inconsistencidgefrand
usemight be concealed by the effect of the combination, and a restricted form of the conditions
previously mentioned must be explicitly verified prior to the combination, as explained in detail
later.

use(<i2,i1>,m)
def(<i2,i1>,m) 2 —-

Figure 5.4.5: Equivalent representation for a delayed call

5.4.5 Combining instructions

As emerged in the previous section, it is sometimes necessary to merge the effect of two distinct
instructions in order to obtain an equivalent effect for a single instruction. In our model, that
means calculating the values tlief andusewould have for such a combined instruction. In
particular, let us assume that we have a sequence of instruggidasandi,, in whichi is the
only follower ofig, andi, the only follower ofi;.

The values ofdef(ip,m), use(ip,m),def(i;,m) anduse(i;,m) are already known for every
m e M. Intuitively, a register is used in modeby the pair(ip,i1) if it is used in that mode bip,
or if it is not defined byip and yet it is used bis. Similarly, a register is defined in modeby the
pair (ip,i1) if it is defined byiy, or if it is defined byig in that mode but it is not defined in some
other mode by;. Formally:

r € def((ip,i1),m) < r edef(iy,mV (r e def(ip,m) Ar ¢ U def(il,nf)>
vYmeM,Vr eR: vmeM
r € use({ip,i1),m) <= r € use(ip,m) Vv (r cuseliL,mAr¢ J def(io,rrf)>
vym'eM
The definition above is quite intuitive, but it may be worth verifying that the mode calculation
algorithm actually still works as expected when the two separate instructions are replaced by the
combined one. In particular, the valuee{pectedefore the execution of the combined instruc-

tion must be identical to the value thexpectedvould assume beforig if the two instructions
are separate. In other terms:

Proposition 5.4.6. If ig and iy are replaced with a new instructios having the effect of the
pair (ip,i1), then
Vme M : expectedior, m) = expectedip, m)

5 Multi-mode Liveness Analysis and Consistency Checks 74

Proof. Using the definition of operatdr (Def. 5.2.19, we know that

Yme M,Vr € R:r € expectedig,m) < r € use(ip,m) Vv (r ¢ U def(ig,m) A
vmeM

YmeM

r € use(is,m) Vv (r ¢ | def(is,m)Are expectecﬂiz,m)>>

and the new value a@xpecteds:

vme M,Vr € R:r € expectedios,m) < r € use(ipr,m) vV <r ¢ U def(ipr, M) AT € expectecﬂiz,m)>
vym'eM

whereuse(ipr, M) = use((ip,i1) ,m) anddef (i, m) = def((ip,i1), m).

The above definition ofx pectedip, m) will be manipulated in order to obtain an equivalent ex-
pression. In order to simplify the notation, some symbols will be used to rewrite the expressions,
with the following meaning:

A:rcuseliom) B:r¢ | J def(io,m) C:recuselis,m
vm'eM

D:r¢ | def(iy,m) Z:r € expectediz,m)
vmeM

The expression foexpectedip, m) can now be rewritten as follows:

vme M,Vr € R:1 € expectedio,m) <
AV(BA(CV(DAE))) <
(AVB)A(AVCV(DAE)) <
(AVB)N(AVCVD)N(AVCVE) &
[(AVB)A(AVCVD)AAVCO)V[(AVB)A(AVCV D)) AE] <
[(AVB)A(AVCO)]V[(AV(BA(CVD))AE]
[(AV(BAC)]VI((AV(BAC))V(BAD)ANE] <

(AV(BAC)IVI(AV(BAC))NE)V ((BAD)NE)] <

5 Multi-mode Liveness Analysis and Consistency Checks 75

[(AV(BAC)V((AV(BAC))NE)|V[(BAD)NE] <

[(AV(BAC)]V[(BAD)AE] &

[r € use(ip,m) v (r ¢ |J def(io,m)Are use(il,m)>] Vv

YmeM

Krgé U def(iom)Ar¢ def(il,rd)>Areexpectecdiz,m)]

vYmeM vYmeM

A similar transformation is now performed @xpectedio;,m). Expandinguse(ipz, m) and
def(i01,rrf):

vYme M,Vr € R:r € expectedip,m) <

r € use(ios, m) v <r ¢ |J def(ios,m)Ar e expecteojiz,m)> &
vym'eM

[r € use(ip,m) v (r cuse(ipmare J def(io,rﬂ)>] Vv

vYmeM

[Vrﬂ’ eEM:— (r e def(ip,m") v (r e def(io,m")Ar¢ def(il,rrf)>> AT € expectec@iz,m)]
vymeM

This last expression is quite similar to the previous expansi@xpéctedip,m). Some addi-
tional transformations can now be performed on this subexpression:

vymeM

Vn’(’eM:ﬁ<redef(il,rrf’)v(redef(iom'(’)m% U def(il,n¥)>> =

vm' e M : <r¢def(i1,rﬂ’)/\(wédef(io,n”(’)vre U def(ibrr())) —

vymeM

v’ e M : (r ¢ def (i, m")) AV €M (r ¢ def(io,m") vre | def(il,r‘d)> —

vymeM

re def(il,M)A<r¢ J def(io.m)vre (J def(il,M)> —

vymeM vymeM vymeM

5 Multi-mode Liveness Analysis and Consistency Checks 76

r¢ |J def(is,m)Ar¢ | J def(io,n)

vmeM vmeM

Which shows thatm € M : expectedio;, m) = expectedip, m). O

The previous proposition shows that the definitionslef anduseon instruction pairs is still
consistent with the mode calculation. In other words, if an instruction pair is replaced with a
single combined instruction, it is still possible to run the mode calculation algorithm obtaining
the same results. In Sectidn3, however, the functiomxpectedwas also used to perform a
number of sanity checks on the original definitiongdeff anduse Combining two instructions
into one, we might lose some information, and miss some inconsistencies.

In detail, the basic idea is to transform the definitionsief, useand follow; into def’, usé
and f0||0V\/j, so that the effect of the delay slots is incorporated into the new functions. Then the
mode calculation algorithm is run using the latter transformed functions instead of the original
ones. Finally, the sanity checks are performed, using the result of the previous algorithm.

In the case in which two instructions are combined, it is necessary to make sure that the sanity
checks, performed in the last stage on the new instruggiomre at least as stringent as the tests
which would have been performed on the original instructions. If there is a chance of some error
conditions going undetected, then it is necessary to perform additional tests while merging the
two instructions, as will be explained more in detail in the following section.

5.4.6 Sanity checks for combined instructions

There are three essential sanity checks that are performed by Algorithm 2: validity and sufficiency
of the routine body, plus consistencyadf anduse according to Conditios.2.4 The equivalent
conditions in the case of combined instructions will now be discussed.

5.4.6.1 Validity

The intuitive idea behind validity asserts that every register which is expected in a certain mode
must be set exactly in that mode by the first preceding definition along every possible execution
path. In Propositios.3.4 an alternate condition was given for validity:

Vmg,mp € Mymy # mp, Vi € 1, Vit € follow({i}) :
def(i,m) Nexpectedis,mp) = @

Assuming that the instructiory of our example is reachable, checking validity igrand i
means:

def(i1,m) Nnexpectedi,, =0
Vimymp € M. my £ mp (.1 1) Nexp 01.2 my)
def(ip,m) Nexpectedii,m) = &

5 Multi-mode Liveness Analysis and Consistency Checks 77

that is:

def(i1,m) Nexpectediz, mp) = &

Vg, mp € M, my 7 my . def (io,m) N (use(il,mz)U (eXpECte(ﬂiz’mZ)\ U def(il’rﬁ))) -
(5.4.1)

YmeM

Using the same test described in SectoB.4for the combined instruction, the test is:
Vmy,mp € M,my # my : def(ip1, my) Nexpectediz, mp) = & (5.4.2)
In order to check whether the new test is sufficiently strong, we would like to verify whether

the test5.4.2is equivalent to the te&§t4.1 Expanding the expression in tést.2

Vmg,mp e M, my #my (def(il,ml)u (def(io,ml)\ U def(il,n¥)>> Nnexpectediz, my) = @
vym'eM

Vmy,mp € M,my # myp : (def (i1, mp) Nexpectediz, mp)) U
((def(io,ml)\ U def(iuﬂ)) ﬂexpectec@iz,mz)> =2
vymeM
def(i1,m) Nexpectediz, mp) = @

Ymg,m € M,m :) . .
1M L7 M (def(lo,ml)\ U def(u,n*()) Nnexpectediz,mp) = @
vmeM

(5.4.3)

The first lines of5.4.3and5.4.1are identical, but it is still necessary to compare the second
lines of the two expressions. The second line of expredsibi3can be written as:

Yy, mp € M, m # mp, vr € R
- (r € expectediz, mp) A (r e def(io,m)Ar¢ | J def(il,nﬂ))

vymeM

Ymy, my € M, my # mp, Vr € R:
. . _ (5.4.4)
r ¢ def(io,m) Vv (re [J def(iy,m)Vvr ¢ expectediz,my)

vmeM
The second line db.4.1can be written as

Ymy, mp € M, my # mp, vr € R:
ﬂ<redef(io,m1)/\(reuse(il,mz)\/<r¢ U def(il,rd)/\reexpectecﬂiz,mz)>>>

vymeM

5 Multi-mode Liveness Analysis and Consistency Checks 78

Ymy, mp € M, my # mp, vr € R

(r ¢ def(ig,m) V ((r € U def(iy,m)Vr ¢ expecteojig,mz)> N use(il,mg)>>

vymeM
(5.4.5)
Written in this form, the main subexpression ®#.4 has the form# Vv G, while the main
subexpression d.4.5has the form7 v (G A H), where

F:ré¢def(io,mm) G: (re U def(il,nf)vr¢expectecﬂi2,mz)> H o r ¢ use(ir,mp)
vmeM

The two subexpressions #14.4and in5.4.5are equivalent for all the truth values #f, G, and
H, except in the cas¢ = false G =true, andH = false which satisfies the subexpression
in 5.4.4but not the one irb.4.5 In other words, if-F A G A =4 then validity in the case of
separate instructions is not satisfied, but validity in the case of combined instructions is (incor-
rectly) satisfied. The validity test on the combined instructions is consequently not as strong as
the original validity test for the separated instructions. On top of cond&iérRit is necessary to
also verify that- (= F A GA—H), thatisF V-GV H:

FV(GANH) & (FVGNFVGVH)
and, sincef Vv G also impliesF vV GV H:
FV(GANH) S (FVGNFVGYVH)NFV-GVH)

FV(GNH) = (FVGNFVH)

Summarising, when instructions are combined, in addition to the validity tés#i@the follow-
ing test must also be verified in order to guarantee the validity of the original routine:

Vm,mp € Mmy # mp, Vr € R:ir ¢ def(ip,my) Vr ¢ use(ig,mp)
which is also equivalent to:
Vimg,mp € M, my # mp, fr € R:r € def(ip,my) At € use(iy, mp)

and finally to:
Vm, mp € M,my # mp - def(ip,m) Nuse(is,mp) = @ (5.4.6)

5.4.6.2 Sufficiency

The definition of sufficiency (Def5.2.13 requires each register expected in a certain mode at
any reachable instruction to be matched by a preceding definition of the same register in the same
mode along every execution path. If an execution path travégsexdi, in the original routine

5 Multi-mode Liveness Analysis and Consistency Checks 79

body, it will also traverse the new instructiofy in the modified routine body. The definition of
sufficiency was:

vYme M,Vr e Rvke N : (i{):enter/\ (Vj €{0,....k=1}:ij, € foIIow({i’j}))/\
r € expectedi,,m) = 3j €{0,....k—1} :r e def(iﬁ,m))

We can consider various cases, to compare the meaning of sufficiency for the original routine
body with sufficiency on the modified routine. It is necessary to verify that we can find an element
i7 of the sequence for whiahe def (i’j,m), whatever the chosen sequence is.

1. If, for a certaini, itisr € expectedij, m) and no element of the subsequefigg. . . ,i}_,)
is equal toig, then verifying sufficiency for that sequence on the transformed code is the
same as doing it for the original routine.

2. Ifthe subsequenc(ég, e i’k71> includes at some poitg andi1, one after the other, then the
original definition says thaj € {0,....k— 1} :r edef(i’j,m). Letw = {i’j|j ~0,... k- 1}\
{ig,i1}. If Jix e W :r € def(ix,m), theniy is part of the modified routine, and part of a sim-
ilar sequence in whicky andi, are replaced byos:. If, on the other hand, it ifiy, € W :

r € def(ix,m), then sufficiency implies that in the original routine= def(ig,m) Vv r €
def(i1,m), while in the modified routine € def(ipz,m). We need to make sure that the
latter implies the former. Expanding= def(ig1,m):

r e def(ios,m) < r e def(iy,m)V <redef(i0,m)/\r§/1f U def(imﬁ))
vmeM

which impliesr € def(ig,m) VVr € def(i1,m). Therefore, verifying the test for a certajn
along(ig, ..., io1, .. ., i}) implies that the test is also verified figralong(i, . .. ,io, i1, - . ., i}).

3. As a last case, let us assume thatithehosen is1 (andij_, is ig) butip andi; do not
appear consecutively in the subseque{ige . i’k71>. In that case, the sufficiency test for
iy in the original routine would have been:

r € expectediy, m) = r € def(ip,m) v Iix e W : r € def(ix,m) (5.4.7)

whereW' = {i’j|j =0,....,k—=1¢\ {io}. In the modified routine body, howevay, is no
longer present and no similar condition is tested. However, the instruction follawing
which we called,, is also reachable and, since sufficiency checks all reachable instructions,
it is true that the following condition will also need to be verified:

r € expectediz, m) = r € def(ip,m) vV Iix e W' : r € def(ix,m) (5.4.8)

Itis desirable to determine whether this last condition does imply the con8itlorabove,
or what additional condition needs to be verified as well. Let us consider some subcases:

5 Multi-mode Liveness Analysis and Consistency Checks 80

(@) If r € expectedi;,m) and alsor € expectedi,, m), then we are recursively in the
case (2) above, consideringasi,. We obtain that € def(ip,m)vr € def(i;,m)V
r € W, satisfying the right hand side of expressio@.7. Consequently, iff €
expectedii,m) andr € expectedi,, m), expressiorb.4.8implies expressiob.4.7.

(b) The only remaining case rsc expectedii, m) butr ¢ expectedi, m). The defini-
tion of r € expectedi1, m) says that

r € expectedi;,m) <= r cuse(i,m)V (r ¢ U def(i1,m)Ar € expectecﬂiz,m)>
vYm'eM

and consequently, if ¢ expectediz, m), it must ber € use(i;,m). Summarising,
the only case in which expressiém.7could be not verified while expressi@mw.8
holds, therefore, is the case in which

r e use(ip,m)Ar ¢ def(ig,m) Aflix e W' : r € def(ix,m)

Now, let us assume thate use(i;,m), r ¢ def(ip,m) and that there is noY € M, m’ # m such
thatr € def(ip,n). Recalling that

r € use(ips,m) <= r € use(ip,m)V <r cuse(i,mAaré¢ J def(io,rr{)>

vmeM

we would also obtain thaitc use(ip1, m). Howevery € use(ip1, m) also implies € expectedip, m),
and, by sufficiency, we would have once again ttigtc W' : r € def(ix,m). Therefore, the only
case in which expressidn4.7is false, while expressiob.4.8is true, is:

r € use(is,m) Ar ¢ def(ip,m) A3m € M,nd £ m:r € def(ig,n)

Finally, it is now possible to say that sufficiency is verified on the original routine body if it is
verified on the routine containirig; instead ofig,i; and, additionally:

Vmy, mp € M,my # mp s def(ip,m) Nuse(is,my) = &

This last condition is, once again, the very same condBidn6previously found in the case of
validity. Verifying such condition, in addition to validity and sufficiency of the modified routine,
itis therefore also possible to determine that the original routine is both valid and sufficient. Since
condition5.4.6does not depend on the valueefpectedthe test can be performed during the
combination ofig andi.

5.4.6.3 Consistency of defand use

The definition of consistency fatef anduseonip andi;, according to Conditios.2.4 is:

5 Multi-mode Liveness Analysis and Consistency Checks 81

use(i,m)Nuse(i,m) = &

Ymy, mp € M,y # mp, Vi € {ig,i1}:
: ' tiovls) {def(i,ml)mdef(i,mz)zg

The verification of these conditions is local to each instruction, and does not rely on the values
of expected Expanding the definitions afse(ip1,) anddef(ip1,m), it is straightforward to
verify that:

Vmy,mp € M,my # mp 2 use(ipr, M) Nuse(ipr, Mp) = & =
use(ip, M) Nuse(ip, M) = @

Vmy,mp € M,my # mp s def(ipy, m) Ndef(ipr,mp) = 2 =
def(iy,m)Ndef(i;,m) =2

In order to verify the consistency ofef anduseonip andij, therefore, it is enough to verify
the consistency of the definitions déf anduseonip; and, additionally, to check that:

use(iz,m) Nuseis, M) = @

_ _ (5.4.9)
def(ip,my) Ndef(ip,my) = &

Vimy, mp € M,ml#mz,{

In this case as well, the test does not depend on the valarpsctedand can be easily per-
formed during the combination of andi.

5.4.7 Delay slot elimination: transformed functions

It is now possible to describe formally the simple transformations that can be applied locally to
each delayed instruction in order to obtain an equivalent representation of the program that does
not contain delayed instructions.

5.4.7.1 Unconditional branch, delayed

If the instruction that is being considered is an unconditional branch, and a delay slot is used,
the instruction that immediately follows the branch is actually executed before the value of the
program counter is changed, as a consequence of the delayed branch execution. The effect is
therefore equivalent to a sequence made up of an instruction that has no effect on the control flow,
plus a an instruction that behaves as the original instruction in the delay slot, but whose following
instruction, in the control flow, is the target of the original branch.

5 Multi-mode Liveness Analysis and Consistency Checks 82

Casel.

usé (i,m) = use(i,m)

usé (sucdi), m) = use(sucq(i),m)
def (i,m) = def(i,m)

def’ (sucd(i),m) = def(sucq(i),m)
followg (i) = sucd(i)

follow; (sucq(i)) = null

follow (i) = null

follow] (sucq(i)) = follow (i)

Vi el,¥Yme M :type(i) =uncondhdelay(i) = delayed=

5.4.7.2 Unconditional branch, annulled delay

In the case in which an annulled delay slot is used for an unconditional branch, the instruction in
the delay slot is completely ignored, being equivalent to a ‘nop’ instruction. However, the branch
is still delayed, and the value of the program counter changes only after the instruction in the
delay slot has been fetched and ignored. Consequently, this is the set of definitions that describe
this case.

Case2.

usé (i,m) = use(i,m)

usé (sucq(i),m) = &

def (i,m) =def(i,m)

def (sucdi),m) = o

followg (i) = sucd(i)

follow; (sucq(i)) = null
follow] (i) = null

follow] (sucq(i)) = followy (i)

Vi e l,Yme M :type(i) = uncondA delay(i) = annul=-

5.4.7.3 Conditional branch, delayed

When a delay slot is used with a conditional branch, the instruction in the delay slot is executed
in any case before the possible change in the value of the program counter. The only effect on the
execution flow is that the branch target branch appears to be a follower of the instruction in the
delay slot rather than of the branch itself. Consequently, the following definitions represent what
happens in the case of a delayed conditional branch.

5 Multi-mode Liveness Analysis and Consistency Checks 83

Case3.

usé (i,m) = use(i,m)

usé (sucq(i),m) = use(sucdi), m)
def (i,m) =def(i,m)

def (sucdi), m) = def(sucq(i),m)
follow; (i) = sucd(i)

follow; (sucq(i)) = followg (sucd(i))
follow (i) = null

follow] (sucq(i)) = followy (i)

Viel,Yme M :type(i) = condAdelay(i) = delayed=

5.4.7.4 Conditional branch, annulled delay

The situation gets slightly more complicated when annulled delay slots are used in conjunction
with conditional branches. In this case, the instruction in the delay slot is executed only if the
branch is taken. Consequently, the branch target will appear to be a follower of the instruction in
the delay slot, but the instruction after the delay slot will appear to be a follower of the branch. In
detail:

Case4.

usé (i,m) = use(i,m)
usé(sucdi),m) = use(sucdi),m)
def (i,m) =def(i,m)

def (sucdi), m) = def(sucq(i),m)
follow; (i) = followg (i)

follow; (sucq(i)) = null

follow (i) = followg (sucd(i))
follow; (sucq(i)) = followy (i)

Viel,Yme M :type(i) = condA delay(i) = annul=

5.4.7.5 Callinstruction, delayed

In the context of delay slots elimination, call instructions need to be treated in a rather particular
way. As discussed in Secti@n2.8 the definitions oflef andusefor a call instruction summarize

the effect of the call to subroutine as a whole. The use of delay slots however, as seen in Section
5.4.4 requires some additional care. During execution, a delayed call instruction will appear
initially not to have any visible effect as the control flow steps through the call instruction to reach
the instruction in the delay slot. Right after the instruction in the delay slot has been executed,
however, the new value of the program counter will be loaded, and the subroutine will be called.
As a net result, when the program counter returns to the instruction that follows the delay slot, the
combined effects of the instruction in the delay slot and the effect of the entire call will appear

5 Multi-mode Liveness Analysis and Consistency Checks 84

to have taken place simultaneously. The effect of the delay slot can be consequently described
adjusting accordinglglef anduse combining the instruction in the delay slot with the pseudo-
instruction corresponding to the call instruction, as follows:

Caseb.
(usé(i,m) =0
usé (sucdi),m) = use((sucdi), i), m)
def (i,m) =

def (sucdi), m) = def((sucdi),i),m)
follow; (i) = followg (i)

follow; (sucq(i)) = follow (sucq(i))
follow (i) = null

follow] (sucq(i)) = null

Viel,Yme M :type(i) = call Adelay(i) = delayed=

This definition relies on the assumption that the call instruction, from the point of view of the
microprocessor, does not use or define, in itself, any registers. If, for whatever reason, the call
instruction on a certain architecture relies or has side effects on certain registers, it is sufficient to
replace the empty sets above with the appropriate sets of registers.

5.4.7.6 Other cases

As required by ConditioB.4.5 instructions having values fty peanddelayequal to(call, annul),
(simpledelayed or (simpleannul) cannot appear ih. The only other remaining cases involve
either simple instructions that are not in delay slots, or branches and calls that are not delayed.
The two possibilities are represented below:

Caseb.
vmeM,Vi el ((i =ifirst V (i # ifirst Adelay(succ (i)) = nodelay) A
usé (i,m) = use(i,m)
Atype(i) = simplendelay(i) = nodelay = def'(i,m) = def(i,m)
follow; (i) = followy (i)
follow (i) = followy (i)
Caserv.

Viel,Vme M : (delay(i) = nodelay\

usé (i,m) = use(i,m)
def (i,m) = def(i,m)
follow; (i) = followg (i)
follow] (i) = followy (i)

Atype(i) € {cond uncondcall}) =

5 Multi-mode Liveness Analysis and Consistency Checks 85

Finally it is necessary to defingsé on the valueexit: Vm e M : usé (exit,m) = use(exit, m),
anddef on the valueenter Vme M : def (enterm) = def(enterm). That completes the def-
inition of the auxiliary functionglef, usé, follow, and follow;, that can then be used in the
customised liveness analysis in order to determine the modes of the various registers. From an
algorithmic point of view, the construction of the auxiliary functions can be performed in a single
pass following the algorithm shown below.

5.4.8 The delay slot elimination algorithm

Since all the transformations can be performed locally, the algorithm can be used to build the
definitions fordef’, usé, follow, and followjin a single linear pass over the $etAccording to
Section5.4.6 some checks are also performed whenever it is hecessary to combine multiple in-
structions, in particular conditiorts4.9and5.4.6 To simplify the description, it will be assumed

that the representations of the functiates, use followy and follow; are simply overwritten to
reflect the new definitiondef’, usé, follow, and follow;. This is the structure of the algorithm:

Algorithm 3 — Delay slot elimination algorithm

procedure delaySlotEliminatiof)

Uses: Map usedefined orle x M

Uses: Map def defined onlp x M

Uses: Maps followp, follow; defined orl,
Uses: Mapstypeanddelaydefined on

{Check Condition5.4.4
1: if type[succ (exit)] # nodelaythen
2. error
3: end if

{Other conditions on delay slots}

4: foralliel do

5. if follows [i] # ifirst then {Check Condition5.4.2
6: if type[succ (follow, [i])] # nodelaythen

7: error

8: end if

9: endif

10: if delay]i] # nodelaythen {Check Condition5.4.3
11 if type[sucd(i)] # simplethen

12: error

13: end if

14: endif

15: if typeli] = simplethen {Check first part of Conditiorb.4.5
16: if delay]i] # nodelaythen
17: error

5 Multi-mode Liveness Analysis and Consistency Checks 86
18: end if
19: endif
20: if typeli] = call then {Check second part of Conditidh4.3
21: if delay|i] = annulthen
22: error
23: end if
24: endif
25: end for
{ followy is generated antbllow; checked according to Secti&wy. 1}
26: forall i €l do
27: if typeli] = simplev type[i] = call then
28: if follow, [i] # null then
29: error
30: end if
31 followg [i] < sucd(i)
32: else iftypeli] = condthen
33: if followy [i] # null then
34: error
35: end if
36: followg [i] < sucd(i)
37: else iftypeli] = uncondthen
38: if follow, [i] # null then
30: error
40: end if
41: followg [i] < null
42: endif
43: end for
{All preconditions are verified. It is now possible to eliminate the delay slots}
44: |« i first
45: while i # exit do
46: if type[i] = uncondA delay|i] = delayedthen {Case1l}
47: followp [i] < sucdi)
48: followp [sucd(i)] < null
49: follow; [sucd(i)] < follow [i]
50: follow [i] < null
{Skip delay slot}
51 i — sucq(i)
52: else iftypefi] = uncondA delayi] = annulthen {Case2}
53: forall me M do
54 def[sucdi),m «— &
55: usefsucdi), m «— &

56:

end for

5

Multi-mode Liveness Analysis and Consistency Checks

87

57:
58:
59:
60:

61:
62:
63:
64:

65:
66:
67:
68:
69:

70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:

85:
86:
87:
88:
89:
90:
91:
92:
93:
94:

followp [i] «— sucdi)
followp [sucd(i)] < null
follow; [sucdi)] < follow |i]
followy [i] < null
{Skip delay slot}
i —sucdi)
else iftypefi] = condA delay]i] = delayedthen {Case3}
follow; [sucd(i)] < followy [i]
follow [i] < null
{Skip delay slot}
i < sucdi)
else iftypefi] = condA delay]i] = annulthen {Case4}
follow; [sucd(i)] < follow |i]
follow, [i] < followg [sucd(i)]
followp [sucd(i)] < null
{Skip delay slot}
i —sucdi)
else iftypefi] = call A delay]i] = annulthen {Case5}
forall my € M do
forall my € M, m; # mp do
if def[i,m]Ndef[i,my] # @ then
error
end if
if uselsucdi),m] Nusesucdi),mp] # @ then
error
end if
if def[i,m] Nusesucdi),mp] # @ then
error
end if
end for
end for
{The sequencésucd(i),i) is combinedjg is sucdi) andij isi}
udef0 «— @
udefl — @
forall me M do
udef0 — udefoU (def[sucdi),m])
udefl «— udeflu (def[i,m])
end for
forall me M do
def[sucdi),m| « def[i,m U (def[sucdi), m| \ udefl)
usesucq(i), m) < usesucdi), m U (usefi,m]\ udefo)
defi,m «— &

5 Multi-mode Liveness Analysis and Consistency Checks 88

95: useli,m «— &
96: end for

{Skip delay slot}
97: i — sucdi)
98: endif

{No delay = nothing to do}
99: i+« sucdi)
100: end while

The complexity involved is linear, both in space and in time, with respdtt foonsidering the
setsR andM fixed). The algorithm can be optimised, during implementation, to group together
similar instructions and loops, which are separate in this description in order to show more clearly
the various conditions and operations. Once the algorithm is complete, the information encoded
in the functiontypeand the branch targets describedfoylow; are encoded in the nefollow;
and follow;, which can be used for the normal mode analysis algorithm.

When eating an elephant, take one bite at a time.
— Gen. C. Abrams , 1914-1974

Chapter 6

Pointer Discovery in the Stack

As we have seen in the previous chapters, tracking pointer information, or more generally mode
information, in the registers of the microprocessor for every machine instruction presents a num-
ber of challenges. Similarly, discovering all the pointers that may be present in the stack presents a
number of difficulties, due to the fairly complex arrangement of the layouts that the stack frames
may have. For instance, on each stack frame there might be local variables, temporary values,
saved registers and so on. This chapter will present the various issues related to determining the
location of all the pointers present on the stack and some techniques that can be of use.hapter
will describe the specific implementation details of the current prototype.

6.1 Stack components

In the typical implementations of many high-level languages, the stack for a single thread is
treated as a sequence of activation records, also called frames, corresponding to the various nested
routine invocations that are active at any given moment, from the main routine to the one most
recently called. Each activation record is used to store information related to one invocation of a
routine. While some of the information mainly depends on the routine’s local data (parameters,
automatic variables and so on), some other information is more closely related to the specific
implementation scheme (registers save area and dynamic links, for instance). The exact structure
of each activation frame is decided by the compiler according to the the optimisations applied
and its internal rules, including the choice of whether variables, parameters and other data are
allocated on the stack or in the registers.

Regardless of the specific optimisations performed, however, the overall frame layout is con-
strained by the Application Binary Interface (ABI) for the specific microprocessor architecture in
use. Such specifications are designed to simplify interoperability among different programming
languages and compilers, specifying, among the rest, calling conventions and the location and for-
mat of the implementation-related data of which the system should be aware, for instance during

89

6 Pointer Discovery in the Stack 90

interrupts. The standard mechanisms established by the ABI offer a certain degree of separation
between caller and callee, making it easier to determine the set of live pointers in each frame, with

a reasonable degree of accuracy, considering each routine in isolation. An inter-procedural anal-
ysis could allow, in certain cases, a higher degree of precision, but it would also require a great

deal of additional work. The following discussion will focus on intra-procedural techniques.

As previously mentioned, several different components may be present in every stack frame.
Those parts will now be listed, and the ways to discover pointers for each of them discussed.
Techniques used more specifically for the SPARC in the current prototype will be discussed later,
in Chapten.

6.2 Return addresses

Each time a subroutine is called, the routine that performs the call is temporarily suspended. After
the callee has completed its job, control must returns to the caller, which implies that the value of
the program counter at which the execution of the caller was suspended has to be preserved. That
value, the return address, is used to determine where to return control after the end of the called
subroutine.

The most obvious location to save the current value of the program counter is the stack frame of
the called routine, so that it can be retrieved from there when returning. Depending on the micro-
processor architecture and on the ABI, the last return address, or the last few, can alternatively be
stored in some of the available registers, for greater efficieMoyt93, Spa94. If the call chain
is deep enough, however, the registers dedicated to store the return addresses will sooner or later
have to be reused. For this reason, a dedicated portion of each activation record is usually also
reserved to store the values of the return addresses. If the registers that contain return values need
to be reused, their content is copied in the corresponding locations in the reserved part of the stack
frame.

Notably, those routines that do not in turn call other routines, also called “leaf” routines, are
often treated in a special way. In the case in which, for instance, a reserved register is used to store
the last return address, a leaf routine will never need to save the content of that register somewhere
else in order to make further calls. As a consequence, there is no need to reserve a slot on the
stack frame for that purpose. It is not unusual for ABIs to prescribe a different standard format
for the layout of the frames of leaf routines, in order to make a more efficient use of available
registers.

The various locations on the stack used to store return addresses, and the reserved registers, can
contain valid pointers to executable code, but never valid pointers to heap objects. Their values,
therefore, only need to be adjusted if the executable code they refer to is dynamically relocated,
but no adjustments are necessary in order to support heap manipulations.

It should also be noted that, if a call instruction is immediately followed by a return instruction,

a tail call optimisation can be performed by the compiler. In that case, both the call instruction
and the return instruction that follows are replaced with a plain branch, and the parameter passing
sequence is adjusted accordingly. While a tail recursion is essentially a branch within the same

6 Pointer Discovery in the Stack 91

compiled routine, a tail call to a different routine (“sibling call”) may look slightly different,
depending on the architecture in use, from a conventional call. For instance, parts of the current
stack frames could be overwritten to store the arguments for the new routine. While sibling call
optimisations do not alter the possibility to analyse the various routines in isolation, the modified
call sequence should be treated with special attention in order to reconstruct correctly the sequence
of activation records. Other forms of optimisations (inlining, for instance) may also cause the call
sequence of compiled routines not to reflect precisely the structure of the original program, but
that is inessential as far as pointer discovery is concerned. We are here interested in the structure
of the compiled code rather than in the functions and procedures of the original source program.

6.3 Dynamic chain

As we have seen, saving the program counter is a crucial step in calling a subroutine, and it is
important to have space allocated for that information on the stack. However, in order to know
where the return addresses are saved, it is also essential to know at all times how to retrieve
the location of the stack frames used by the various routines. Depending on the ABI of the
microprocessor in use, there might be different ways to determine the address of the current
activation record, but for efficiency reasons that address is customarily stored, during execution,
in a dedicated register known as frame pointer. This register is saved on the stack, or in further
registers, as control moves across routines, so that it constantly refers to the activation record of
the current routine. The pattern followed is the same previously described for the program counter
and the return addresses. In the same way in which the return addresses point within the code of
routines, describing the chain of successive invocations, the saved values of the frame pointer (the
“dynamic links”) define a chain of activation records, the “dynamic chain”.

Sometimes, if no semi-dynamic variables are used (see later), it is possible to determine the
size of each stack frame statically. In that case, the value of the frame pointer can be calculated
using the current value of the stack pointer and fixed offsets. Consequently, the stack pointer can
replace the frame pointer as a base register for the accesses to the stack frame contents, and the
register that is normally reserved to store the frame pointer can be reused for other purposes. As a
side effect, there is no need to reserve space on the stack to store the values of the frame pointer.

Some architectures, including the SPARC, offer hardware facilities to save and restore automat-
ically the value of the frame pointer while creating and deleting activation records. As in the case
of the return address, the value of the frame pointer need not be saved, in certain cases, when leaf
routines are used. If no further local information is required on the stack, leaf routines can be
implemented on some microprocessors without creating an activation record at all. It is necessary
to pay special attention to this possibility in order to attribute correctly each activation record to
the matching compiled routine while traversing the dynamic chain.

In order to discover all of the pointers in all the active stack frames at any instruction, the
full dynamic chain must be known whenever the microprocessor is preemptively interrupted.
Surprisingly, however, on certain microprocessor architectures it is extremely difficult to discover
the exact state of the dynamic chain while executing certain instruction sequences in perfectly

6 Pointer Discovery in the Stack 92

ordinary programs. On the SPARC, for instance, part of the necessary information is kept in
some registers, but inspecting registers and stack is not enough to determine which ones are in
use at any given moment. More details on this aspect are available in Seatidn

While the dynamic links are valid pointers, they are also known to be pointers to the stack.
Their values, consequently, only have to be adjusted if, for some reason, the stack needs to be
dynamically relocated.

6.4 Static chain

In the languages that support lexical nesting, it is necessary to maintain information about the
most recently activated stack frames of those routines that lexically enclose the currently active
routine. In order to keep track of those frames, a common solution is to arrange them in a chain,
known as the static chain, in which each stack frame contains a reference, the static link, to the
most recent stack frame of the enclosing routine. The chain, therefore, goes from the frame used
by the innermost routine to the one used by the outermost routine, following the static links.

The static chain is used to retrieve the automatic variables of the enclosing routines. For in-
stance, in order to retrieve the variables that are defined in the routine immediately enclosing the
current one, the first static link is used in order to find the correct activation record. If the frame
of the routine enclosing the one enclosing the current one (two levels of nesting) is required, two
steps of the static chain are followed, and so on.

While the static chain is easily implemented by adding a slot to each activation frame, it is
usually more efficient to use a single table, the display vector, to store the references to those
frames, one vector position per nesting level. Since the number of static links is not influenced by
recursion, but only by the static nesting structure of the program, a limited number of positions is
sufficient JASU8E. Static links, which are legitimate pointers, could therefore be present on the
stack (or in the display vector), assuming values corresponding to stack addresses. Considerations
similar to those made for dynamic links apply, and we can conclude that heap manipulations do
not affect the elements of the static chain.

6.5 Arguments

Arguments can be passed to the called subroutine in a variety of ways. However, once again to
guarantee interoperability, a single passing convention is established by the ABI. Broadly speak-
ing, on common microprocessors arguments are either passed entirely on the stack, or some in the
registers and the remainder on the stack. The first approach is preferred by those microprocessors
that have a very limited number of registers, while the second is favoured by those with a more
extended register set. In any case, part of the tuple of arguments might end up on the stack, and
some pointers might be contained there. It is therefore necessary to discover those pointers in
order to perform the necessary adjustments when required. The rest of this section focuses on
arguments passed in the stack.

6 Pointer Discovery in the Stack 93

The exact calling conventions and the argument passing mechanism are extremely dependent
on the microprocessor’s features. In general, outgoing arguments are set up before the before the
subroutine is called, and before the new activation record is created. Consequently, the arguments
normally reside in the caller’s frame.

From a conceptual point of view, each argument has a lifetime both in the caller and in the
callee, and as such some mode information must be available when the microprocessor is inter-
rupted in either routine. For the caller, the lifetime of a stack slot used as an outgoing argument
extends from the moment in which the argument is stored to the moment in which the call is made
(assuming call by value). The callee sees the same stack slot as an incoming argument, whose
lifetime extends from the routine prologue down to the last use of that slot in the routine body. As
a consequence, descriptors for the mode of such stack slots will have to appear in both routines.

A useful distinction could be made between those microprocessors (such as the x86 family)
which have PUSH/POP-style operations, and those that rely instead on addressing formats with
displacement to access the various stack slots. If PUSH and POP are used, the general trend is to
use those operations to push the necessary arguments onto the stack, one by one. In that case, the
value of the stack pointer keeps moving up and down following the accumulation of arguments
and their release upon return. If, on the other hand, PUSH and POP are not available, the necessary
arguments will be stored in the current fixed-size frame, and the value of the stack pointer does
not move. The adjustments of the stack pointer need to be taken into account if a request for a
service routine, and consequently for pointer discovery, is made while the parameters are being
pushed. In particular, some compilers perform rather tricky optimisations in order to reduce the
number of POP operations. For instance, calling two routines with one argument each would
normally be represented as: PUSH(argl), CALL(x), POP(1), PUSH(arg2), CALL(y), POP(1).
But a optimising compiler could change the sequence to: PUSH(argl), CALL(X), PUSH(arg2),
CALL(y), POP(2). The exact offset by which the stack pointer has moved with respect to the
value assumed at the beginning of the routine body, should be determined (statically) for every
machine instruction. That information can then be used at runtime to reconstruct, from the current
value of the stack pointer, its initial value, which can therefore be used as a reference point within
the frame.

Regardless of the optimisation applied, and whether the stack pointer moves during execution
or not, itis always possible to keep track of the various locations used to store outgoing arguments
calculating their offset with respect to the initial value of the stack pointéeping track of the
offsets, it is still possible to perform a liveness analysis similar to the one used for registers, and
generate a data structure that can be used to associate each value of the program counter to the
current mode of each frame slot used as an outgoing argument. More details are available in the
discussion on automatic variables, in Section

When the same slots are treated as incoming arguments, as seen by the callee, they can be
considered in a manner entirely similar to automatic variables, except that they are already defined

1A recent contribution made by Josef Zlomek of SUSE Labs and Daniel Berlin of IBM Research, for instance,
improves the ability of GCC to track variables in the cases in which the stack pointer changes during the execution
of the routine body, as described above. Such information can then be used by the GDB debugger to keep track of
variables in optimised code.

6 Pointer Discovery in the Stack 94

at the beginning of the routine body. The precise way in which incoming arguments are accessed
by the callee depends on the specific details of the ABI, but generally they can be retrieved using
fixed offsets from either the stack pointer or the current frame pointer. Particular attention must be
paid to the fact that the incoming arguments are alive during the execution of the routine prologue.
Since incoming arguments contained in stack slots are usually not touched by the prologue, their
mode can be obtained by checking the tables or other structures that describe the use of those
slots in the caller.

A particular case is represented by variadic argument lists, such as in the C printf function.
While the caller knows which arguments are stored on the stack at each call site, the callee has
no way of knowing statically which arguments, and of which types, will be used at runtime.
The callee will access the variadic portion of its argument list as a generic list of values, or
bytes, depending on criteria that bypass the usual type-system of the language. In particular, the
compiler has no knowledge about those values while compiling the callee.

Leaving aside the usual criticisms of variadic argument lists, the feature poses a problem for this
analysis in that it is not possible to determine statically neither the number of arguments nor their
mode. It is however possible, at least in principle, to act conservatively on the variadic portion
of the argument list knowing that the arguments will be accessed from a certain base register (the
stack pointer, the frame pointer or something else) using an index, in a manner similar to an array.
Full precision, however, cannot be obtained in general.

Variadic argument lists are a rare (and questionable) feature that can be easily replaced using
different programming styles, and that are quite rare outside C/C-Even though C99 offers
a way to write variadic functions and macros, the original definition of C did not even offer a
portable way to create user-defined variadic functi&i®g8]. In practice, the main application of
variadic argument lists is supporting traditional C library functions fiként f () andscanf ().

For such functions, in which the first argument is used as a format string, it is not far-fetched to
imagine an implementation in which the first argument is parsed whenever an interrupt is received,
in order to discover dynamically where pointers really are in the variadic argument block. That
would allow once again to obtain full precision, even for those library functions. For comparison,
it is worth pointing out that some compilers (like GCC) do actually inspect the format string
during compilation, if statically available, to discover inconsistencies between the format string
itself and the types of the remaining arguments.

It is also important to mention that, although arguments are usually either pointers or values of
primitive types, it is actually possible, in many languages, to pass whole records as arguments.
In that case, issues similar to those discussed in Se2tbmust be taken into account, with
particular reference to variant and packed records. Moreover, if the structure is very large, a

2variadic argument lists (varargs) are a planned feature of the upcoming Java 2 Platform, Reld&RE Ty are
however treated a& ject [] arrays, automatically created by the compiler, and as such the underlying implementation
will use a single argument containing a pointer to the array object. Consequently, there are no problems similar
to C/C++ varargs, in which each element of the variadic list has to be a single and independent argument because
of compatibility with other functions. The feature remains controversial in Java, with some advocating Compact
Object Array Literals (COAL) instead, as ivo (1,2, {8,9.2,"aa"}, 3, {"bb", 7}); where the elements in braces
are automatically transformed @ ject [] arrays. Using the latter notation, the number of arguments is actually fixed.
Since Java 1.5 is designed to be bytecode-compatible with Java 1.4, the new changes and features are in any case only
visible at the source code level.

6 Pointer Discovery in the Stack 95

copy operation could be used by the compiler to set up the large argument, using either block-
move instructions (if available), a system routine, or a simple loop. In some cases, an interrupt
could find the argument only half-copied, and it could be quite difficult to determine how much
of the structure has been copied without inspecting loop counters and similar implementation
details. Determining exactly which locations contain live pointers, therefore, may prove to be
rather difficult.

There are two simple approaches that can be used in those cases. The simpler course of action,
of course, is simply treating the copy operation as a critical section. If an interrupt is received
halfway through the copy, execution is simply resumed until the end of the loop. On the other
hand, if a quicker response is desired, it is also possible to work conservatively, while maintaining
the ability to move memory about the heap. The layout of the destination record, which will be
used as an argument, is known statically. Since no location is shared between pointers and scalars,
a slot which is dedicated to a pointer can either really contain a pointer, or be unused, but it will
never contain valid scalar data. Consequently, even if the record is only partially copied and some
random data are mistakenly identified as valid pointers, they can be freely altered as a result of
heap memory movements. Such an approach is conservative, since certain memory blocks could
mistakenly appear to be in use and not be reclaimed, but it is still possible to move memory and
adjust pointers freely.

It should also be noted that in certain cases the conventions defined by the ABI for parameter
passing, when records are used as parameters, might require a copy of the original record to be
stored on the stack, but then a pointer to that copy is passed to the callee, for instance in a register,
as a reference to the argument. If such a pointer is in turn stored on the stack, than it should be
taken into the account that one further stack location contains a valid pointer, although its value
refers to a stack location rather than a memory block in the heap.

Finally, there might be the case in which an array is passed by value as an argument, which
requires the whole array to be copied. The treatment is the same as for records. In the particular
case of array arguments passed by value with parametric length, as allowable for instance in many
Pascal extensions, the length is generally available at runtime as a parameter to the callee, anditis
again possible to determine the layout of the argument area and the location of pointers at runtime.
More details on this aspect are contained in SedidnG In the case of C/C++, the real length
of arrays passed as parameters is not available, but arrays are treated as pointers and whole arrays
cannot be passed by value as arguments. Similarly, Java arrays are actually complete objects, and
Java objects are handled by implicit reference rather than by value.

6.6 Return value

Considerations entirely similar to those made for arguments apply to the return value, which is
also shared between the callee and the caller. For efficiency reasons, it is common practice to use
some conventional registers to store the return value. However, in the case of a complete structure
(record or array) used as a return value, a different convention may apply. The resulting structure

is in those cases usually stored in an area reserved somewhere on the stack, and a pointer is used

6 Pointer Discovery in the Stack 96

to communicate the location of the result between caller and callee. As in the case of arguments,
the possible presence of a structure on the stack, used to store the return value, must be taken
into account while statically creating the descriptors that will be used to discover the pointers at
runtime.

In an object-oriented language that returns an object to the caller, the most common scenario
is the implementation returning a pointer to the resulting object, allocated in the heap. In the
(unlikely) case of an implementation which actually allocates such object on the stack, there
would be a potential problem. Since the full type of the object returned is not known statically,
determining the number and the position of the pointers is somewhat more difficult. However,
since it must be possible to identify the real type of the object at runtime, there must also be a
way to obtain, from the object, a pointer to the class descriptor. Using such information it is
straightforward to determine the full object layout at runtime, and consequently the full set of
pointers.

6.7 Automatic variables

Every activation record is also used to store automatic varidliteseach routine invocation.
While the compiler can use some of the registers to store the automatic variables which are more
frequently used, the activation record is the obvious container for the remaining ones. In partic-
ular, each activation record could contain semi-static variables (fixed length) and semi-dynamic
variables (such as parametric arrays). Additionally, certain automatic variables could be alive
only for part of the routine, and multiple variables, with different modes, could share the same
locations in the activation records. The various issues related to pointer discovery in the stack-
allocated automatic variables will be now analysed.

6.7.1 Frame variants

While compiling a given routine, the compiler internally creates a map from the set of stack-
allocated automatic variables to offsets in the activation records. Those offsets are then used to
generate accesses to the variables in the corresponding compiled code. In order to save memory,
it is common practice to reuse the available locations of an activation record, so that the same
locations represent distinct variables that are never alive simultaneously. For example, consider
the following C fragment.

if (t<10) {
int a=t;

} else {
int *x=&t;

3The term “automatic” is used here in the conventional sense of variables which are automatically created when
a routine or block is entered, and discarded at the end. Note that the term “local”, although generally used to refer
to automatic variables, could also refer to static local variables (in the C sense), which are not part of the activation
record.

6 Pointer Discovery in the Stack 97

}

The fragment on the previous page is compiled by GCC, without applying optimisations, into the
following SPARC code:

1d [%fp+68], %00

cmp %00, 9
bg .LL3
nop
1d [$fp+68], %00 # extract value of t
st %00, [%fp-12] # store in automatic var a
b .LL4
nop
LLL3:
add $fp, 68, %00 # extract addr of t
st %00, [%fp-12] # store in automatic var x

LLL4:

The memory locations at the offset -12 in the frame is used for both the variabledx, and in
this case the mode of the same stack location is different depending on the position in the code.

In order to discover all the pointers in use at a certain instruction, at runtime, it will be necessary
to have enough information available to map the instruction to the offsets which are reserved, at
that stage, for pointers. Such information, which is available statically, can then be encoded
in some data structure (a table, for instance) for later perusal. Of course, knowing that a stack
location is reserved for a pointer does not strictly imply that a valid pointer is actually contained,
or that it is alive, in that stack location at any given moment. For instance, in an array of pointers,
not all elements might be in use at any given moment. A liveness analysis, where applicable, can
be quite useful to refine the available information further, and more details will be discussed on
this point later.

In principle, the necessary information can be obtained by inspecting the internal structures of
the compiler. After the code generation pass the compiler knows both the offsets used by each
automatic variable, and which assembler instructions resulted from the expansion of intermediate
constructs that use certain variables. Consequently, it is also possible to create an association
between the ranges of assembler instructions and the offsets which are used as pointers for each
range. It is possible to think of this association as a series of “stack frame variants”, multiple lay-
outs which differ in certain parts. Only one of those variants exists at each assembler instruction in
the final compiled routine. The variants could be represented, for instance, by a tree in which the
common part is completed by multiple alternatives for the variant parts, each of which in turn can
be subdivided into its common and variant subparts, and so on. Such an organisation would also
reflect the static nesting of lexical blocks within the source code. Other data structures describing
the same information can also be used. At least in principle, the size of all the descriptors together
could be quite large, being proportional to the number of assembler instructions times the number
of frame slots used to store automatic variables. In practice, however, it is reasonable to expect
that only a limited number of variants are used in every routine, due to practical considerations
about programming styles.

6 Pointer Discovery in the Stack 98

Should table size become a concern, however, there is an alternative that can be used, at the
expense of an increase of the frame record size. The crucial requirement is the ability to distin-
guish the slots which are used for pointers from those which are used for scalar data. That can be
accomplished by modifying the offsets so that such sharing is never possible throughout the life of
the routine. In that case, there would be just one possible layout, but it would be less economical
in terms of space in the activation frame.

The idea of avoiding overlaps was used, for instance, by the JBE implementation mentioned in
AppendixA. It should be noted that, if offsets are reorganised, it may be worth packing together
all of the slots used for pointers, so that the specification of the layout is simply the size of the
pointers area. There are also security implications in the idea, as pointed out by Hiroaki Etoh
[Eto03, describing a research project in which “The novel features are [...] the reordering of
local variables to place buffers after pointers to avoid the corruption of pointers that could be used
to further corrupt arbitrary memory locations [...]". A related technique, used in the context of
memory tagging rather than static handling, was used by Ganesan to reduce the tagging overhead
[Gan9].

It was previously mentioned that only one of the variants may be in use at any one point in the
code. That is the case, in concrete terms, if the final compiled code only uses a single mode for
each stack slot at each point in the code, regardless of the dynamic path followed. In this sense,
the requirement is similar to the “Gosling Property”, as cited by Agesen, Detlefs, and Moss in
their interesting papers on type-precision in JaMa97, ADM98]. A pathological compiler could
create code that does not respect that property, but it is reasonable to expect ordinary compilers to
generate suitable code. In particular, GCC uses pseudo-registers to translate automatic variables,
and in the final stages of the code generation those pseudo-registers are assigned to stack loca-
tions. Each stack slot is only assigned once to each live pseudo-register at one point of the code,
therefore the above requirement is implicitly respected, at least for simple types. Additional sanity
checks were however introduced in the experimental implementation, as described in S&ction
In the case of aggregate types, the property is still respected, except for variant records (known
in C as unions). In such case, either variant records must be disallowed, or an offset adjustment
must be introduced to make sure that there is never overlapping between pointers and scalars.

It might be useful to recall that this discussion assumes that the original optimised compiled
code is left as much as possible unchanged and that the data structures used for the pointer dis-
covery are created statically whenever possible, for a later dynamic inspection. Other solutions
which imply an active tracking of pointers, as for instance memory tagging, are also possible
but likely to be more expensive in terms of execution speed unless specialised hardware support
is available. More details on the extraction of layout information are discussed later, in Section
6.7.7

6.7.2 Liveness of variables or components with fixed offset

The automatic variables area of an activation frame, as previously discussed, is used to store
data according to the low-level representation of the automatic variables originally present in the
source code. For instance, simple data, like integers, floating-point numbers, and pointers, might

6 Pointer Discovery in the Stack 99

be present as the result of a straightforward translation of simple variables used in the source
code. In principle, the same variable could potentially be allocated to different locations in two
different portions of the code, if the compiler established that the variable is not alive somewhere
in the middle and has reused the previous frame location. In practice, however, it is easier, while
writing compilers, to maintain a fixed mapping from each automatic variable to a certain offset.

During the code generation, the compiler creates the final assembly code using, in accordance
with the capabilities of the specific microprocessor, some sort of addressing mode in order to ac-
cess the location associated with a certain automatic variable at that point in the code. The crucial
aspect is that, regardless of the specific addressing mode in use and the possible intermediate cal-
culations of pointers for the access, the compiler knows exactly the offset, in the activation record,
at which the variable is located. In general it should be relatively straightforward to extract such
information from the compiler, and generate local annotations similar to those used for the regis-
ters, with the purpose of describing which stack locations are written or read by each assembler
instruction.

Using such local information, it is then possible to run a liveness algorithm similar to the one
described in Chaptes, using stack offsets rather than registers. Of course, as already discussed
for registers, if the liveness information for the various stack slots is already present in the internal
compiler structures at the level of detail of the single assembler instruction, a separate liveness
analysis can be avoided. The resulting liveness map can then be inspected at runtime to discover
not only which stack slots are reserved for pointers, as in the case of the frame variants described
in Section6.7.1, but also which slots actually contain live pointers. Such a simple analysis is
perfectly suitable if automatic variables cannot be accessed by other routines, and it would be
adequate, for instance, for the Java language. In such a case, each of the automatic variables
would either have some primitive type or be an implicit reference to some dbject.

The use of records on the stack, as long as arrays are not used, would also not cause any
problems, since any access to a record component, arbitrarily nested, would still take place using
a fixed offset. However, there are a number of cases in which local variables can be accessed using
different mechanisms, which require some adjustments to the simple liveness analysis previously
described. The most common cases are:

nested subroutines:if lexical nesting is available, the nested subroutines can freely access and
overwrite the local variables of the enclosing routine.

4If inner classes are used, nested subroutines can actually access automatic variables of enclosing contexts if those
variables are declared final (that is, they are constant after initialisation). From the Java Language Specification: “Any
local variable, formal method parameter or exception handler parameter used but not declared in an inner class must be
declared final, and must be definitely assigned before the body of the inner ¢&E3B00 page 141]. Without that
restriction, inner classes would behave like closures. What really happens in Java is that the constant value is implicitly
copiedinto a hidden area in the instance of the inner class. That allows (apparent) references to the enclosing context
to be made, allowing the activation record of the enclosing routine to be discarded even though the instance of the inner
class, with its local copy, can live on. That is a rather tricky case, since the exact time of the copy can only be known
looking at the implementation, but it is reasonable to expect the copy operation to be made during the initialisation
of the instance of the inner class. The call to such initialiser should therefore be annotated to indicate to the liveness
algorithm that certain variables might be accessed (read) during the call. More details on this aspect are discussed in
Section6.7.3

6 Pointer Discovery in the Stack 100

references: taking the address of a variable or field and passing it to a subroutine, the subroutine
has no knowledge of which variable is actually being read or written.

arrays: since an array element can be accessed using an index which is not known statically, it
is also not possible statically to know exactly which element is read or written.

These cases will now be discussed, with a description of the way in which the liveness informa-
tion can be reconstructed, with varying degrees of accuracy depending on the specific approach
chosen.

6.7.3 Nested subroutines

In certain circumstances, the automatic variables of a routine might be read or modified by one
of the subroutines that are executed while the activation record that contains those variables is
active. The most straightforward case is the use of a lexically nested subroutine, which is able
to access such variables using the information supplied by the static chain. In this case, although
the offset of the variable which is being accessed is statically known (except in the case of arrays,
see later), different calls to the same subroutine might result in different read or write operations,
depending on the control flow followed in each case.

In order to include this information in the liveness analysis, and determine therefore when each
frame slot contains a live pointer, there are different possible approaches. A possible technique,
for instance, might be using an intra-procedural analysis to gather some information about the
possible uses of each automatic variable. Such an analysis would be partly simplified by the fact
that the set of all the possible subroutines that are lexically nested in a given routine, and that can
alter one of its variables, is statically known.

Performing an intra-procedural analysis, however, is in general rather complex. Since the com-
piler has information about the automatic variables that can be accessed by other routines (it uses
that information to perform the frame slot allocation), an alternative would be to inspect the list
of automatic variables in the internal compiler structures. If a certain automatic variable was al-
located to a certain frame slot, and that variable can be accessed from other routines, it will be
sufficient to assume, conservatively, that the call first reads and then updates that slot, and include
the relevant annotations in our fine-grain liveness analysis. Doing so will force the slot to be con-
sidered as alive at the call site. If the compiler has more detailed information, and knows about
slots that can or cannot be altered by individual calls to subroutines (for instance, some system
calls might be known not to access local variables), such information can be used to obtain even
more accurate liveness information. Once again, the liveness information obtained in this way is
just a refinement of the information already available from the layouts described in S&atitn
a slot reserved for pointers can be freely altered even if the value it contains is not a valid pointer
at a particular time.

6 Pointer Discovery in the Stack 101

6.7.4 Reference passing

The case in which local variables can be accessed indirectly, through references, is somewhat
similar, with the exception that references can be calculated and there is no certainty of the exact
variable that will be modified in a certain case. For example, consider the following C fragment:

if (x<5)

p=é&a;

else

p=&Xx;
doSomething (p);

In this example, it is not possible to know statically whether a pointer do x will be passed

to doSomething (), and it will be necessary to consider that both of them could be accessed. The
kind of reference described can be created explicitly by the programmer, in C for example, or
generated automatically by the compiler. A typical example of automatic creation of references
is the natural implementation of the “variable parameters” of Pascal and Modula, in which a
reference to the argument variable is passed to the callee. Notably, a reference to a record can be
used to access indirectly an inner component, therefore passing to a subroutine a reference to a
record has the effect of exposing for inspection or modification all of the pointers contained in the
record itself.

In the case of automatic variables that are accessed by subroutines via dereferencing, it is nec-
essary to make conservative assumptions about the way in which some of the local variables can
be used, or to inspect the information available in the compiler internals, if available, in order to
obtain more precise information about the life of those frame slots. The compiler, in particular,
makes conservative assumptions about the life or the variables while allocating the stack slots. For
instance the compiler can discover that the address of a certain variable is taken at some point,
either implicitly or explicitly, and it might conservatively assume that, in the following code, that
variable can be altered by the called subroutines. There might also be an explicit indication (for
instance a “volatile” qualifieP)that the variable can change across calisshould be noted that
an automatic variable whose address is taken can be indirectly altered by the local routine as well,
for instance if the user dereferences a pointer containing the address of that variable.

Those conservative assumptions on the life of the variables are used by the compiler in order to
decide the allocation of the variables to the slots in the activation record. We might be interested

5There is a distinction in the way the compiler would behave if it saw that an address of a variable is taken, versus
a “volatile” specifier. In the first case, the compiler will assume that the variable can be altered by any subroutine,
and will make sure that a value cached in a register is flushed to memory before the call takes place. On the other
hand, a “volatile” qualifier is used to specify that the variable can be accessed at any time, for instance by an interrupt
routine, and therefore the value of the variable is always flushed to memory as soon as possible and it is read again
from memory every time the variable is accessed.

6In C, a pointer which contains the address of an automatic variable could potentially be used to access a different
automatic variable, adding a certain offset. Such an use would most likely confuse the compiler, and our analysis as
well. It should be noted, however, that using pointers in this fashion is not portable, and not even legal C. Even if the
implementation allows such usage, the implementation might reorder the slots used for the various automatic variables,
or store some local variables in registers, making such an indirect use of pointers very dependent from the compiler’s
behaviour at best, and not a good programming practice in general.

6 Pointer Discovery in the Stack 102

in further refinement of that information, if additional information can be obtained by looking at
the way in which the stack slots are used by the individual machine instructions.

For example, let us assume that the address of an automatic variable is copied into a register, and
that the same register is dereferenced, later in the code, to perform read and write operations. If it
is possible to determine statically that the register does not change, in the meantime, the accesses
performed dereferencing the register really refer to the variable whose address was taken. Conse-
guently, even if the compiler may conservatively consider the variable as alive during the whole
routine, we can statically determine that the variable is only used by specific machine instructions.
Performing this sort of analysis on the machine code, however, can be quite complicated, and it
is not clear whether the effort would justify the increase in accuracy, with respect to the simpler
information offered by the frame layouts.

6.7.5 Arrays

Issues similar to the ones described in the previous section are also found while dealing with
stack-allocated arrays. When arrays are used, it is in general impossible to determine statically
which elements will be read or written at any given moment during execution. As a consequence,
it is also virtually impossible to determine the life of individual elements in an array without
performing some sort of dynamic tracking. That is of particular concern to us since, if the array
in question has locations reserved for pointers, it is not possible to tell whether those locations
contain valid pointers or some random data. That could happen not just for arrays of pointers, but
also for arrays of structures containing pointers, or arrays of arrays containing pointers, and so
on.

In order to have more precise indications on the life of the individual array elements, a few
considerations can be made. First of all, the life of the array as a whole is a limit to the life of
the individual elements. To clarify, let us assume that the space for an automatic array containing
some pointers is permanently allocated, by the compiler, at a certain offset in the activation frame
for the entire body of the routine. We might be able to discover, analysing the code, that all of the
accesses to that array are limited to a certain portion of the code. It is then trivial to conclude that,
in the remaining parts of the code, the array as a whole is never alive, and that consequently none
of the pointers it contains can be alive. Of course, it must still be considered that the array could
be accessed, as discussed in the previous subsection, by lexically nested subroutines or indirectly
through references, either to the array or to one of its elements or subcomponents.

Another possible approach, which can be combined with the previous one, could be to pre-
initialise all of the locations reserved for pointers in the array to a conventional value, for example
zero. If the conventional value is not a valid pointer, it is possible to assert that all of the pointers
in the array which are found to be equal to that value are certainly not alive in that moment. The
array layout, as explained in Sectiérv.7, can be obtained either from the compiler internals or
from the debugging information. The possible positions of pointers in the array can therefore be
easily determined. The main drawback of a dynamic pre-initialisation, of course, is the overhead
required by the initialisation code. Additionally, it is also necessary to pay special care about pos-
sible interrupts received during the initialisation stage, which would find the array only partially

6 Pointer Discovery in the Stack 103

initialised. This approach is however quite natural for those programming languages that initialise
all the variables to a conventional value in any case, as for instance does Java.

6.7.6 Semi-dynamic variables

A special case is the use of semi-dynafrdatomatic variables, that is variables allocated on the
stack whose size depends on runtime values, and is calculated during the allocation of the activa-
tion record. The term refers in particular to semi-dynamic automatic arrays, like unconstrained
Ada arrays, or the open arrays of Turbo Pascal 7 and Free P8scaldJan04. Semi-dynamic
automatic arrays present a potential problem when determining the frame layout, since their size
is not known statically.

While adding support for semi-dynamic automatic arrays involves some extra work, it is not
difficult to imagine possible ways in which, at runtime, the real size of the array can be deter-
mined. First of all, the languages that support semi-dynamic arrays usually offer some facilities
to retrieve the real lower and upper bounds of the array at runtime, and those values must be avail-
able as long as the array is in memory. For instance, Ada hasthet and’ 1ast attributes for
arrays. The real values of the bounds are typically stored next to the array itself.

Second, the information necessary to reconstruct the real size of the semi-dynamic array can
also be extracted by the debugging information. For example, the DWARF-2 “Debugging Infor-
mation Format” manual states that “the debugging information must provide consumers a way to
find the location of program variables, determine the bounds of dynamic arrays and strings [...]”
[DWA93, Sec.2.4]. Extracting such information, it is then possible to know the real content of the
array at runtime, and eventually discovering all the pointers.

6.7.7 Extracting layout information

As previously mentioned, there are two basic ways to extract the information required to recon-
struct the frame layout(s) used by a compiled routine. The most direct, and complex, way is to
inspect the compiler’s internals, decoding its internal structures in order to find the frame slots
reserved for pointers in the allocation record for every machine instruction. This solution might
require some substantial work, especially if dealing with a pre-existing compiler, given the poten-
tial complexity of the data structures that must be explored.

"There is a degree of ambiguity in the terms “dynamic” and “semi-dynamic”, when applied to arrays, and the
terminology is not very consistent in literature. Sometimes the dynamic aspect is intended to be the ability of resizing
the array after allocation. In this sense, “dynamic” arrays would be, for instance, the “flex arrays” of Algol68 while
Java arrays, which cannot change size after allocation but have no statically fixed size, are occasionally called “semi-
dynamic”. Sometimes, even Ada arrays are called “dynamic”. In this thesis, however, the terms “dynamic” and
“semi-dynamic” refer to the storage class used for the dag#8@: dynamic arrays are arrays allocated dynamically,
and not necessarily at the time of the creation of the allocation record, while semi-dynamic arrays are part of the
activation record. Accordingly, we consider Java arrays to be “dynamic”, since they are allocated independently from
the creation of the activation record, they can survive the method that allocated them and are normally heap-allocated.
To remove every possible ambiguity, the term “semi-dynamic automatic” is used as a synonymous for “stack-allocated,
of size not statically known”

6 Pointer Discovery in the Stack 104

An alternative approach, that essentially extracts the same information, is the use of a stan-
dardized format for the extraction of such information. In particular, there are a number of well-
established and well-documented debugging formats that are likely to offer exactly the kind of
information that is required, and much more. Furthermore, it is highly likely that every com-
piler has some built-in ability to output some of its internal information in one of the standard
debugging formats.

The more common debugging formats are the traditional STAB format, COFF, MIPS debug
(Third Eye, part of ECOFF), DWARF (Debug With Arbitrary Record Format, used in conjunction
with the ELF object file format) and SOM (HP’s object file and debug format, unrelated to IBM’s
SOM ABI), just considering Unix-like environments.

One of the most popular format is probably DWARF, because of its flexibility and the wide
diffusion of the ELF format. There are a few variations on the format: DWARF-1, the cur-
rent DWARF-2, and the upcoming DWARF-&E04. An inspection of the DWARF-2 manual
[DWA93] reveals the full extent of the information that can be obtained. In particular, the de-
bugging format uselmcation expressionandlocation liststo describe where the various objects
(variables and other data) are located. What follows is an extract from the manual:

Location descriptions can be either of two forms:

1. Location expressionghich are a language independent representation of ad-
dressing rules of arbitrary complexity built from a few basic building blocks,
or operations. They are sufficient for describing the location of any object as
long as its lifetime is either static or the same as the lexical block that owns it,
and it does not move throughout its lifetime.

2. Location listswhich are used to describe objects that have a limited lifetime or
change their location throughout their lifetime. Location lists are more com-
pletely described below.

[...] Each entry in a location list consists of:

1. A beginning address. This address is relative to the base address of the compi-
lation unit referencing this location list. It marks the beginning of the address
range over which the location is valid.

2. An ending address, again relative to the base address of the compilation unit
referencing this location list. It marks the first address past the end of the
address range over which the location is valid.

3. Alocation expression describing the location of the object over the range spec-
ified by the beginning and end addresses.

[...] If all of the address ranges in a given location list do not collectively cover the
entire range over which the object in question is defined, it is assumed that the object
is not available for the portion of the range that is not covered.

6 Pointer Discovery in the Stack 105

It is quite evident how the information described above can be used to reconstruct the content
of the automatic variables area in every allocation slot, and in particular the different possible
frame variants depending on the address within the compiled routine. Such information can then
be refined, as previously discussed, in order to increase the accuracy in determining the address
ranges in which the pointers contained in the automatic variables area can be alive.

6.8 Blocks obtained from “ alloca()

Among the countless system routines available to Unix-derivatives, a particular system call is
available on several systems to allocate a chunk of memory directly on the stack. The call
void *alloca(size_t size) has BSD origins, and operates in a manner somewhat similar
tomalloc (). The function is intended to allocate the block of memory on the stack, and free

it automatically when returning from the routine which performed the allocation. The call is

of interest because the allocated memory block could be used to store pointers, and we need to
discover them as part of the stack analysis.

While its intended functionality is interestinglloca () has a number of problems. For in-
stance, there is no clean way of detecting an error condition #omca (), which may lead to
stack corruption. Additionallya11oca () is not fully portable, since it involves adjustments of
the stack pointers out of the ordinary stack handling done by prologue and epilogue. To try to
support the routine with fewer problems, and on more machines, there areaven () -based
implementations of11oca (), in which the memory is actually allocated on the heap. In general,
however, the use aflloca () is almost invariably discouraged.

Apart from those considerations, our only concern is the availability of a mechanism for dis-
covering the pointers in the newly allocated block. In general, that cannot be done because of
the lack of information about the use that will be made of that memory block. Nonetheless, it is
reasonable to imagine a customised alternativa t@ca () , working in a similar way, in which a
descriptor of the memory block layout is passed as a parameter, rather than the size. A reference
to the descriptor could then be copied to a convenient position on the allocation frame, so that,
even at runtime, it is still possible to discover the pointers contained in the allocated block. The
additional complexity, however, hardly justifies the support for a scarcely-used routine, whose ef-
fect can be achieved in other ways. Some support for that kind of functionality could nonetheless,
at least in principle, be offered.

6.9 Registers save area

As explained in Sectiod.4, during the prologue and the epilogue the values of some registers
may be saved and restored, respectively, in order to make those registers available to the called
routine. The scheme that is followed, to a first approximation, is presented in BiguieA gray
box means that the mode for the corresponding register has the same mode in which it was set
by the caller. When a routine is called, a new activation frame is created and the instructions of
the prologue save the content of some registers in memory, in predetermined locations in the new

6 Pointer Discovery in the Stack 106

frame. Alternatively, the prologue could save some registers in special additional registers. After
their values are saved, the registers are represented with a white box in the diagram, meaning that
they now are available for exclusive use by the current routine. They may therefore be, depending
on the code, either ready to be used, currently used, or no longer used. After the body execution
is complete, the previous values are restored by the instructions of the epilogue. As previously
mentioned in the case of return addresses, even if register windows or similar devices are used by
the microprocessor, some space should really be reserved in each allocation record to store the
saved values of the registers. If register windows are used, a system call is usually available to
flush the content of the hidden registers to the corresponding frame locations.

As a consequence, while the registers be-
come unused and available, following the same BC
pattern the stack locations reserved in the save iii Prologue
area for the registers become “alive”, with the PC+3
mode that the corresponding register had in e
the caller. The save area remains active for
the entire duration of the routine (except if
the routine never returns, of course) and it be- Epilogue
comes inactive again while the values are copied
again from the frame to the registers. In many
architectures the availability of specialised in-
structions means that several registers, possi-
bly all of those that need to be saved, can be))
transferred in a single step. Figure §.9.1: Local registers in prologue, body

Discovering pointers in the registers save a?g},{ﬂ epilogue
can be easily done, using the same kind of information already generated in prologue and epilogue
to discover the mode of registers. It is trivial, while the code for prologue and epilogue is being
generated, to generate descriptors that pinpoint which frame slots become alive at every step. At
runtime, when it is necessary to discover the pointers in the save area, it is sufficient to check the
current program counter against those descriptors, in order to reconstruct which locations in the
save area are currently parking the values of saved registers. Checking the mode tables of the
caller, looking up the modes corresponding to the current return address, is enough to determine
which of the active locations in the save area contain pointers.

RO|R1|R2|R3|R4|R5|R6(R7

Body

D _ The register mode can be determined locally
"~ before the execution of the instruction at this address

6.10 Temporary values

Occasionally, during the compilation of particularly long and complex expressions, the compiler
might run out of temporary registers to store the intermediate results of the subexpressions. In
that case, some additional space is used on the stack in order to park the intermediate results
that cannot be stored in the available registers. While that is a fairly common event with those
microprocessors which have a limited number of registers (such as the x86 family), it is more rare
on architectures with a larger number of registers, but it may happen in both cases.

6 Pointer Discovery in the Stack 107

The way in which some stack space is used to store temporary values is basically the same as
has been discussed for outgoing arguments in Seétfnlf the architecture in use has PUSH
and POP operations, the temporary values are generally deposited on the stack and removed from
there at the end of the evaluation of the expression. If, on the other hand, PUSH and POP are
not available, the size of the area necessary to store all of the temporary values, which can be
pre-calculated statically, is added to the size of the activation record for that routine, so that a
number of locations, accessed using an offset from either the stack pointer or the frame pointer,
are available to store the temporary values. Exactly in the same way that was discussed for
arguments in SectioB.5, it is possible, in this case as well, to reconstruct the life of the locations
used to store temporary values, and most importantly their modes, which allows us to discover
the pointers during runtime.

6.11 Objects

Analysing a program written in an object-oriented language, it may be possible to determine
that certain objects can actually be allocated on the stack, saving the overheads imposed by heap
management and garbage collecti@5P8 GS0Q. If such an object is present on the stack, it
could contain pointers that must be taken into account during pointer discovery, at runtime.

It is reasonable to assume that, if the object is allocated as part of the activation frame, its size
and structure are known statically. In that case, the object can be simply treated as any other
record, with a fixed structure. Even in the unlikely case that the object is allocated on the stack
but its structure is not statically known, the object can be still treated as a kind of semi-dynamic
variable. If the structure of the object is not known statically, there must be a way to discover
that information at runtime. A reference to some sort of descriptor will be therefore available
from the object, so that the message dispatcher can find out which method should be called. Such
information, therefore, will also be available to the runtime component of the pointer discovery,
giving it a key to find out dynamically the layout of the object, and finally to discover its pointers.

6.12 Other information on the stack

Sometimes, data that does not easily fit in one of the previous categories might be present on the
stack. Dealing with such special cases may or may not be feasible, depending on the specific
case and on the implementation details. Although the discussion will not go into much detail, the
technique of trampolines will be introduced as an example.

The technique of trampolines was introduced by a paper by Breuel appeared in USENIX-88
[Bre89, and it can be described as a mechanism to support lexical nesting and lexical closures in
C++ while preserving the existing function calling conventions. The core idea is creating a short
segment of code directlgn the stackand jumping to it. The technique is actually rather useful,
and it is actively used by GCC.

The trick used by trampolines relies on fine implementation details and, most importantly, it re-
quires that the stack data area is executable (which may be unfeasible, or strongly discouraged, on

6 Pointer Discovery in the Stack 108

some architectures). If the microprocessor has separate caches for instructions and data, writing
in the stack might not cause the instruction cache to be updated, and special precautions must be
taken. The presence of a trampoline does not involve, in itself, pointers to the heap, but the code
fragment, or the registers it uses, might contain pointers to code and to the stack, which must be
found if the stack or the executable code are to be moved. While it is likely that trampolines can
be supported, albeit with some effort, their presence is an example of the kind of unexpected dif-
ficulties that might be present while discovering pointers, and that require a very strict integration
with the implementation techniques used by the compiler.

“What time is it?”
“I don’t Know, it Keeps changing.”
— Anonymous

Chapter 7

Pointer Discovery in the Heap

7.1 Pointer discovery

The discussion has centered, so far, on procedures and techniques that can be used to discover
pointers in the registers and in the stack. These pointers form a set of roots, which can be used to
determine which heap blocks are directly accessible from outside the heap (globals, as previously
said, do not present particular implementation problems, and are not discussed in detail in this
analysis). If we intend to manipulate the heap, for instance in order to perform garbage collection,
compaction, or to copy the heap content somewhere else, it is also important to know which heap
blocks can be reached following pointers contained in other heap blocks, so that it is possible
to determine the set of all the blocks transitively reachable from the roots, and therefore alive
according to reachability. It should be noted, incidentally, that moving a heap block can in
general be quite an expensive operation, since it involves finding and adjusting all the live pointers
to that block.

In order to reconstruct the possible paths that can lead to a heap block, it is necessary to discover
the locations, in the memory blocks contained in the heap, of all the possible pointers. In general,
itis impossible to predetermine statically whether at a certain stage during execution one of those
locations will really contain a valid and live pointer, so the values contained should be treated
conservatively. However, since it is possible to exclude the presence of pointers in the remain-
ing memory locations in heap blocks, the set of objects potentially reachable can be calculated,
conservatively, assuming that all the pointers found are valid and alive. Furthermore, since the
locations reserved for pointers can never contain valid scalar data, even values that appear to be
valid pointers, even though they are actually random data, can be freely modified.

IThere are other criteria that might be used to determine that certain objects are no longer alive. For instance,
a reachability-based analysis could find that a certain block is still reachable, but a flow analysis might be able to
determine, instead, that the block will never be used again.

109

7 Pointer Discovery in the Heap 110

7.1.1 Block layouts

Knowing the possible locations of pointers in heap blocks could be accomplished dynamically us-
ing tagging techniques, but that would involve a substantial overhead during execution, or would
require specialised hardware. If as little overhead as possible is desired during the execution of
compiled code, a simple alternative is requiring that the layout of each memory block is supplied
to the heap manager during allocation, using some sort of descriptor. The heap manager will
then link the descriptor, or a private copy of the same, to the newly allocated block. At runtime,
when it is necessary to discover pointers in the heap blocks, it is then trivial to inspect the layout
descriptors associated to each block.

A drawback of this approach is the inability to support the conventional C allocation rou-
tines, which only specify the size of the block when allocating, as in the following prototype:
void *malloc(size_t nbytes). The use of those routines in existing C programs would there-
fore need to be changed to add a reference to a descriptor, informing the system of the intended
use of the block which is being allocated. In most other languages, the allocation takes place
specifying the type of the entity which is being allocated, rather than its size, which simplifies the
automatic extraction of the layout and does not require modifications of the source code in order
to obtain the functionality required.

It should be noted that linking a block layout to each memory block implies a space overhead
of one additional pointer per block in the heap. In object-oriented systems, the average size
of allocated objects is rather small and the total overhead could be significant. In that case, if
the object-oriented language is class-based, it may be convenient to associate the block layout
descriptor to the class rather than the individual objects, so that the pointer to the object class
can also be used to determine the object layout. That solution only requires additional data to be
added to the classes, and there is no space overhead for every individual object.

The layout of the memory block can be either specified manually or extracted automatically,
if enough information is available. An easy way to obtain the layout information relevant for
specific record types (or object types) is the use of debugging information, which can act as
a standard interface to access the internals of the compiler. Such an approach was used, for
instance, by Kakkad, Johnstone, and Wilskd\\v9g, who describe how it is possible to obtain
type descriptor records (describing the full low-level layout, and not just the location of pointers)
from debugging information, using the infrastructure provided by the GNU debugier,

The ability to distinguish statically pointers from non-pointers relies on the assumption that
heap blocks never change their layout after allocation. Variant records, for instance, would cause
more than one layout to be possibly associated with a heap block and, at runtime, it would not
be possible to know which of the variants is in use, at least in the version without discriminant.
The ability to discover pointers would then be severely restricted. A possibility could be using
a conservative analysis (losing the ability to move memory in the heap) considering a combined
layout which includes all of the possible locations used for pointers in a given block. An alter-
native could be to reorganise the layouts so that no location is ever shared between pointers and
scalar values, similarly to what was previously discussed for stack frames in Séctiohhis
alternative, fairly simple to implement, could however prevent interoperability with existing code.

7 Pointer Discovery in the Heap 111

The use of a discriminant (also known as tag, or selector) for the variant record allows the runtime
system to distinguish dynamically which of the possible layouts is in use at any given moment.
However, this solution could be somewhat complex to implement, given the need to reconstruct
in the runtime system the binding between the values of the discriminant and the possible layouts
of the variant record.

Another case in which the layout of a memory block, used as an object, could change dynami-
cally is, at least in principle, the use of an object-oriented language that has the ability to mutate
the structure of its objects dynamically. There is however some freedom while implementing such
a feature. If the size of the block needs to be changed, for example, a trivial solution would be to
allocate a new heap block and copy the relevant parts of the old content, rather than rearranging
the heap structures to accommodate the new size. The important aspect of altering an existing
block, in any case, is the need to cooperate with the runtime system and the heap handler so
that an incoming request for a service routine can be dealt with properly when parts of the heap
are undergoing changes, since the layout descriptors associated to one or more objects can be
temporarily invalid.

7.1.2 Allocation

Once the layout of a memory block is determined, at compile time in principle (but at any time
before allocation is sufficient), the possible locations that can contain pointers can be discovered
at runtime. However, there are two more details about the block creation that should be discussed:
what happens if a service routine is requested while a new block is being allocated, and whether
a block should be initialised.

Allocating objects in the heap is, by definition, an operation that changes the structure of the
heap. If a service routine alters preemptively the heap while an allocation is taking place a conflict
might arise, and the heap might be left in an inconsistent state. This is a common problems in
heaps shared by multiple threads which are scheduled preemptively, and similar solutions can
be adopted in this case. The obvious solution is considering the core portion of the allocation
atomic. A useful paper by Shivers et aB@M99 discusses the issues surrounding atomic heap
transactions, and the possibility of aborting a partially completed heap allocation, rather than
completing it, should an interrupt arrive during the sequence. Similar techniques can be adopted
in our case.

7.1.3 Initialisation

Once the heap structure is modified, the newly allocated block still contains random data. The
choice, at this point, is whether to initialise the content of the block to some standard value (either
the whole block or just the pointers) or, alternatively, leave the block as itis. There are two factors
that concur to the decision. Some programming languages, like Java, assume that the content of
every new heap block is entirely initialised to standard values (in Java zero, false, null, and so
on). In those languages, it would make little sense to return a block containing random values
and leaving to the calling code the task of initialising it. For other languages, like C++, the initial
content of the memory block has no relevance. A second factor is the accuracy that we wish

7 Pointer Discovery in the Heap 112

to achieve on the pointers. Preinitialising all the pointers to a standard value, null for instance,
before the block can be used by the language, ensures that the pointers that are initially unused
are recognised as such, rather than being treated conservatively. There is a trade-off between
the additional time spent initialising the block (or at least its pointers) and the potential future
savings in terms of memory and time, due to lower number of possibly invalid pointers treated
conservatively.

If the memory block is to be initialised before control is returned, there is an additional detail
concerning interrupts which might be received during the initialisation stage. If a service routine,
and consequently a pointer discovery, are requested while initialising, it might be useful to inform
the runtime module that there are really no valid pointers in the block yet, and that the values
currently present, initialised or otherwise, should be ignored. That can be easily accomplished
leaving the reference, which should refer to the layout descriptor, initially set to a standard value,
for instance null, during the initial allocation stage. If a pointer discovery is requested, the run-
time will detect the standard value and skip the block altogether. Once the initialisation stage is
complete, the real value of the reference to the layout descriptor can be moved atomically in the
location corresponding to the new block. Every pointer discovery request received immediately
afterwards will find all the pointers properly initialised, and easily recognisable as not currently
in use.

7.1.4 Code in the heap

A final note should be made about storing code in the heap. During the discussions about pointer
discovery in the registers and the stack, a number of considerations were made about pointers that
are guaranteed to be pointing somewhere within the stack, or within the code, as opposed to heap
pointers. If some code can be stored in a heap block, however, the situation becomes somewhat
more complex when block relocation is required. If code residing on the heap is called, and
that code in turns calls other code, part of the dynamic chain will contain addresses that refer to
locations within heap blocks. If such blocks are relocated, the dynamic chain needs to be adjusted,
as well as potentially all the pointers which can be used to refer to code. The runtime, and the
data structures that are prepared for use by the runtime module should reflect the new possibility.

An additional factor is that the pointers will not, in general, point to the base address of the
heap block any longer. When a heap block is moved, it is necessary to adjust the value of all of
the pointers which refer to that block, including possible pointers to code within the block. In
that case the pointer to the base of the memory block should be calculated from the value of the
pointer that refers to the code, so that the pointer can be updated if the block is moved. More
details about this aspect are available in Chap@edevoted to derived pointers.

Being unable to separate pointers to heap blocks from pointers to the code also requires more
operations while performing certain operations. For instance, we have previously seen that certain
locations on the stack are always used to refer to code locations and as such can be ignored while
calculating the reachable set of blocks in the heap. If code is contained in the heap, such an
assumption is no longer valid. If possible, for the sake of efficiency, storing code in the heap
should therefore be avoided if possible.

I wouldn 't reveal the required information under torture.

But I would if bribed.
— DG (rgreenfield@btinternet.com) , August 13, 2001

Chapter 8

Runtime Module

The creation of the data structures (the PC maps) that describe the use of registers, stack, and heap,
has a natural counterpart in the runtime component that will dynamically explore those structures
whenever a pointer discovery is preemptively requested. This chapter will describe the overall
structure of the runtime module and the general techniques that can be used to reconstruct the
pointer information. Information more specifically related to the test implementation is available

in Chapter9. Before delving in the details of the runtime module, it will be useful to summarise
what was described in the previous chapters, listing the information that will be available during
the runtime analysis.

8.1 Data structures

A number of different data structures are created, as discussed in the previous chapters, dur-
ing compilation. The exact organisation of those data structures depends on the implementation
choices for the system, including the trade-off between speed of access and size, support for
specific features of programming languages (packed records, semi-dynamic variables, and so on)
and, of course, the target architecture. The fundamental information that will be available in those
structures, leaving out the support for some less critical features, can be summarised as follows:

From the registers analysis, for each routine:

e maps that describe the mode of registers for every instruction in the routine body of the
compiled routine, specifically which registers may contain valid pointers.

¢ information about registers used as arguments and return values, in particular which ones
are used as pointers.

113

8 Runtime Module 114

e the set of registers that are saved and restored in prologue and epilogue, and at which
instructions each of the registers is saved/restored.

e if register windows or similar mechanisms are used, which instructions in prologue and
epilogue perform the register renaming.

Also of importance are the following sets: volatile registers, call-preserved registers, and among
the latter the registers actually used by each routine.

From the stack analysis, for each routine:

e whichregisters are used to access the various parts of the frame (frame pointer/stack pointer).
Normally specified by the ABI, but may depend on leaf/non-leaf condition.

¢ information about where the registers are saved (which offsets in the stack frame). Such
information can be omitted if the set of offsets is fixed (for instance, in the SPARC there is
a fixed area devoted to that purpose).

¢ |ocations in the frame which are used for arguments and return value, and if there are any
pointers among them.

¢ the possible layouts of locations used for automatic variables, and temporary values, asso-
ciating the instructions in the compiled body to the offsets, or range of offsets, of locations
reserved for pointers. That includes, if supported, information about semi-dynamic areas.

e if required, information about further locations, in the stack frame, that may contain point-
ers to the heap.

From the allocations of heap blocks:

¢ layout of each block, with the position of pointers. This information is not necessarily
available statically, but when a pointer discovery is requested, a layout descriptor will be
available for each heap block.

All of the above information will be available to the runtime module, described in more detail in
the following section.

8.2 Structure of the runtime module

At runtime, the program compiled by the customised compiler will require some support for its

execution, and for the proper handling of service routines that may need to inspect, or alter, the
heap content. The necessary infrastructure will be offered by the runtime module, which, among
its functions, will coordinate the use of the heap between the program and the service routines,
and discover the pointers when a preemptive request is received. The exact design of runtime
module and heap manager, of course, are specific to the implementation. Overall, however, the

8 Runtime Module 115

runtime module will probably have a structure resembling the logical diagram in Fggarg
which is also mostly followed by the test implementation detailed in Ch&pter

Heap Manager

Info on

Allocation block
requests Heap blocks layouts

Inspect and
manipulate
Discovery Core Pointer Sanvica rautina
: | information Service routine
Preemptive service PC maps

j A

requests i
q for registers Requests to move
and stack heap blocks

Figure 8.2.1: Structure of the runtime module

The runtime module revolves around a discovery core, interfaced with the heap manager and
pluggable service routines. The heap manager deals with allocation requests from the program,
and provides an interface through which the discovery code can inspect and manipulate the heap.
In particular, the heap is inspected by the discovery core in order to find pointers, and it is modified
by the discovery core whenever a heap block should be moved. Every time the program requests
a heap allocation, an associated descriptor is passed to the heap manager (which might make a
local copy of it) to specify the block layout.

The discovery core assumes control preemptively, temporarily suspending the normal execu-
tion. The state of the suspended thread, including the content of user-accessible registers and
other system information, is saved by the system in its internal structures, in order to resume nor-
mal execution later. On many systems, such information is accessible using a standard structure,
known as a context, which also contains details about stack size and location. Using the mech-
anisms that will be shortly discussed, the discovery core inspects the saved state of the registers
(including the program counter), the stack, and the heap, using the information contained in the
data structure statically created by the compiler for registers and stack, and the descriptors for
heap blocks. The set of locations that can contain pointers is determined, and it is passed to the
service routine.

The service routine uses the set of pointers calculated by the discovery core to explore the heap,
and read its content. If a memory block is to be moved, the service routine asks the core to alter
the heap appropriately, maintaining the necessary bookkeeping information. Although not shown
in the diagram, the core will modify the stack and the saved registers whenever necessary in order
to reflect the new location of the memory blocks. Once the service routine has performed the
heap manipulation required, control is returned to the discovery core, which performs the final
clean-up and updates the context to reflect the modified values of pointers contained in registers

8 Runtime Module 116

and stack. Control is then returned to the user program, using the updated context.
A more detailed explanation of the techniques that the discovery core may use in order to find
pointers is discussed in the next sections.

8.3 Extracting the context

If a service routine needs to operate preemptively, the execution of the user program is temporarily
suspended and control passes to the runtime module in order to proceed with pointer discovery.
The first operation that the discovery core must perform, in order to determine the position of
pointers, is finding out where the system structures related to the suspended threads are. In par-
ticular, it is necessary to find the saved state of user-accessible registers, including the program
counter, and enough information about the stack of each thread to reconstruct the activation chains
and the current running context. In general, that information will be made available by the system
using a structure containing the “context” of the interrupted thread.

To be precise, it would be necessary to distinguish between kernel-level threads and user-level
threads. For instance, the structure knownastext (user context) can be used in conjunction
with the callsgetcontext () and £tcontext () to easily implement user-level threads in a vari-
ety of systems, including Linux, Solaris, OpenBSD, NetBSD, and AlX. The gallsontext ()
and &tcontext (), according to the manual pages of NetBSD 1.6, first appeared in AT&T Sys-
tem V.4 UNIX. In the systems conforming to the Open Group Base Specificatpe0, the
ucontext structure can also be obtained automatically as part of the signal handler invocation,
in which case the structure contains a great deal of information about the suspended thread, in-
cluding the value of user-level registers, the size and location of the stack, and so on. Using
ucontext structures, it is quite easy to implement user-level threads, controlling manually the
context which corresponds to every thread, which simplifies the task of finding the whole set of
contexts whenever a signal is received.

Using standard thread libraries it might be more tricky to suspend all the threads, and to ex-
tract the context information. The specific approach will depend on the thread model in use,
since they vary in the set of calls and conventions available. The most common thread models
are the popular ANSI/IEEE POSIX 1003.1¢-1995, DCE threads, Solaris threads (also known as
Unix International threads), and Microsoft-style Win32 threads. Suspending arbitrary threads
can be accomplished directly in the Solaris-style model, using the atissuspend () and
thr_continue (), and in Win32 usinguspendThread () andResumeThread (), but no equiv-
alent primitives exist in POSIX threads, which may require some more effort or less portable
techniques (for instance, sendingGSTOP and STGCONT usingpthread_kill () may work on
some systems).

Regardless of the specific technique used, and the gory implementation details, what is neces-
sary is the ability to determine the set of threads we wish to operate on, the ability to suspend
them, and the context information for each. Once the stack location, program counter and other
registers are known, it is possible to start inspecting the statically built tables and the heap layout
descriptors to find pointers. The operation can be subdivided into simpler steps, corresponding to

8 Runtime Module 117

logically distinct storage areas, as will be explained in the following section.

Before discussing the details of pointer discovery, however, it is important to point out an issue
that might derive from the preemptive suspension of threads. So far, it has been implicitly assumed
that, whenever a thread is preemptively interrupted, the code which is being executed in that
moment, having being compiled by the customised compiler, has associated to it the set of data
structures necessary to discover all the pointers. While such an assumption may be true in the
case of a system entirely developed using the customised compiler, there are cases in which that
might not be the case. If the code generated using the customised compiler, for instance, is hosted
by a traditional system and makes use of existing libraries, an interrupt could be received while
a thread is in code with no associated data structures, making it impossible to fully determine
whether pointers are contained in registers and stack frames at that moment. Another case in
which a preemptive request for a service routine could not be served immediately is the case in
which, for whatever reason, a critical section of code needs to be completed before anything else
can happen, for instance a section of code which is manipulating the heap structure. In all those
cases, it is necessary to make sure that control is returned, for each thread, to “safe” code, in which
every instruction can be treated as a safe point. While a full explanation of the issues involved will
be presented in Sectidb, the following section will focus on the pointer discovery procedure
for a single thread, assuming it to be suspended at an instruction in the custom code for which the
additional data structures are available, and not within a critical section.

8.4 Pointer discovery

The pointer discovery operation can be subdivided into a number of simpler tasks, depending
on the content of registers, stack and heap. Although the specific details may vary with the
implementation, it is possible to distinguish three separate sections:

e user-level registers and register save areas in the stack
e automatic variables, temporaries, arguments and return values saved on the stack

e heap blocks

The operations that need to be performed for each section are now examined.

8.4.1 Registers and register save areas

When a request for pointer discovery is received, the content of the user-level registers is available
in the representation in memory of the context, as previously explained. Referring to the diagram
in Figure8.2.1, the value of the program counter can be extracted from the context, and used
to look up the use of registers for that instruction, by checking the maps associated with that
instruction. However, as we have seen, the data structures describing the modes of registers is
built relying exclusively on information that can be obtained locally, inspecting a single routine.

In the case in which a register has a certain mode prior to entering a routine, and is not used at

8 Runtime Module 118

all until the end of the same routine, there is no information in the map of that routine which
can be used determine what the mode of that register should be. In that case, the maps related
to the calling routines must be examined. Furthermore, while prologue and epilogue are being
executed, the mode of a certain register may depend on the local maps or on the maps of the
caller, depending on whether the previous value of that register has been saved or not at a given
instruction.

In order to clarify the mechanisms, and to make the discussion more systematic, let us recall
the categories of registers introduced in Seciah The user-level registers are grouped in four
categories: purpose-specific registers, global registers, volatile registers, and call-preserved reg-
isters. Many purpose-specific registers, because of the way they are used by the compiler, will
never contain a valid pointer to a heap block. That may include registers that could actually be
used as general purpose registers, according to the microprocessor architecture, but that are used
by the compiler exclusively for specific tasks. For instance, as long as we are only interested
in relocating heap memory, we never need to look for pointers to such memory in the program
counter, the stack pointer, the frame pointer, special registers used as loop indexes, as static chain
pointer, and so on. The purpose-specific registers and the global registers that contain pointers
to the heap will be known statically, and determining their mode does not involve any particular
problem.

The remaining user-accessible registers can be divided into two categories: registers that are
assumed to be volatile across calls, and registers that must have their value preserved across calls.
If the caller needs to make sure that the content of one of the volatile registers survives across
a call, it is the caller’s responsibility to save its content somewhere (either in another register
or in memory) prior to the call, and restore the value afterwards. Symmetrically, if the callee
wants to use one of the call-preserved registers, it will be the callee’s duty to save the content of
the register during the prologue, and restore the register in the epilogue, before returning. The
separation between volatile and call-preserved is fixed and dictated by the ABI, and it needs to be
unigue in order to ensure interoperability between code generated by different compilers.

This simple distinction is enough to give a preliminary indication of where is is possible to
find the mode information for a certain register. If the register is volatile, it is by definition the
“property” of the more recently activated routine, and its mode information must be available in
the corresponding mode map. If a volatile register is not found in the map, then it is unused. On
the other hand, if a register is call-preserved, the register could either be used by the more recently
activated routine, or by the caller (or one of the caller’s callers).

In the case of call-preserved registers, it is necessary to check the map corresponding to the
value of the program counter saved in the current context. If the register is present in such map,
and the routine was interrupted in the body, then the register is owned by the current routine, and
its mode can be determined immediately. If the register is present in the map, but the routine was
interrupted in prologue or epilogue, then the position of the program counter should be compared
with the information about registers saved/restored contained in the related descriptors. If the
register has already been saved, or has not yet been restored, then it is owned by the current
routine and the mode can be found in the local maps. If the register has not yet been saved, or has
already been restored, then the mode of the register depends on the caller, and the register map of

8 Runtime Module 119

the latter will have to be checked. Finally, if the register is not at all present in the register map
for the current routine, then the mode depends once again on the caller.

For those registers whose mode depends on the caller, the topmost return address must be
considered, leading to the value that the program counter had during the execution of the call
instruction. Such value of the program counter can be used to check the register maps of the
caller. If the register is found, the mode can be determined. Otherwise we are once again the case
in which we cannot tell immediately what the mode is, but this time we cannot be in prologue or
epilogue. Therefore the register is not used by the caller, and it is necessary to keep inspecting
return addresses from the dynamic call chain until either the register is found in one of the maps
or the stack has been fully explored.

Here is a summary of the above explanation in a schematic form:

o for volatile registers, check map for current PC:
— if found, the mode can be obtained from the map
— if not found, the register is unused

e for call-preserved routine, check the current PC:
— If PC in routine body, check for register in register map:
x if found, the mode can be obtained from the map
x if not found, inspect the map corresponding to the return address

— If PC is not in the routine body, check if register is saved at that value of PC:

x if saved, check local data structures of prologue/epilogue:

- if found, the mode can be obtained from the structures
- if not found, register is unused

x if not saved, inspect the map corresponding to the return address

To inspect the map corresponding to the return address:

e is the return address valid/does another frame exist?
— if not valid/stack fully traversed, the register is unused
— if valid, check register map for that address
« if register found, the mode can be obtained from the map
x If register not found, obtain the next return address and repeat

This scheme can be used to reconstruct the mode of all the registers in question. The time required,
in the worst case, is proportional to the time of a lookup in the map times the stack depth. It should
be pointed out, however, that the whole stack needs to be traversed anyway, to find the pointers
contained in automatic variables. Also, in certain cases it is not necessary to traverse the whole
stack. For the SPARC, as will be explained later, it is only ever necessary to descend two levels
of stack depth to be able to fully determine the mode of all the registers.

8 Runtime Module 120

The above stack traversal can also be combined with the stack traversals necessary for analysing
the register save areas in the stack. The scheme that can be followed has similarities with the
previous one. It will be assumed that, if hardware techniques like register windows are used, the
content of the additional registers, used as save buffer, can be flushed to memory in corresponding
register save areas. This time as well, the first operation is checking the value of the program
counter in the saved context. If the value corresponds to an instruction within the routine body,
it means that the register save area for the current routine has already been filled with the values
that the registers had at the beginning of the prologue (except in the possible special case of
leaf routines). If the value of the program counter refers to an instruction in the prologue or the
epilogue, it is necessary to determine which registers are saved and which are not. Once the set
of positions currently used in the register save area of the current routine has been determined,
it is time to find out where the pointers are. The saved values refer to the content of the call-
preserved registers before the current routine was called, therefore the mode of those locations
can be obtained by checking the register map corresponding to the topmost return address for the
registers corresponding to those locations in the top stack frame. If one of the registers is not
found in that map, the stack should be traversed as in the case of registers, looking for the mode
of the register corresponding to each used location in the register save area. Once the mode of
saved registers for the current frame has been determined, the same procedure can be repeated
for the caller, except that now the address will certainly be within the routine body, and the full
register save area is used. The register save area contained in the stack frame of the caller can
then be examined using the map corresponding to the registers as they were used by the caller’s
caller, using the following return address, and so on.

The above procedure can be further rearranged, so that it can be executed using a single traver-
sal. That is done by keeping track of the stack locations, in all the previous frames, for which
the mode is not determined. At every step of the traversal, if the corresponding register is found
in the local map then the mode of the stack location becomes known. Also, if a register is saved
by a certain routine, it is in order to reuse the same register within the body, therefore the same
register also appears in the register map for the same routine. Consequently, there can be only one
stack location, at every step, corresponding to one register for which the mode has not yet been
determined. In order to clarify the whole procedure, an (informal) algorithmic description will be
useful:

e Find the PC saved in the context. Determine theSset locations in the topmost stack
frame that correspond to saved registers. Each locati@as an associated register.

¢ Find the return address and consider the preceding stack frame. Check the register map for
the mode information of the call-preserved registers only. For each of the registers found,
check if a location irSis associated to that register. If so, the map supplies the mode for
that location, which is removed from the $etAt the end, the se$ contains the locations
for which the mode has not yet been determined. Ad8ttee set of locations in the current
register save area. The set being added is disjoint fEprsince all the corresponding
registers were also in the register map that was just scanned. Repeat this point, finding the
new return address, until the stack is fully scanned.

8 Runtime Module 121

e After the stack has been fully scanned, every element |Sican be marked as unused.
The scan for registers and the scan for the register save area can now be combined as follows:

e Obtain PC from the context. For all volatile registers, check map for current PC:
— if found, the mode can be obtained from the map
— if not found, the register is unused.

e Let C be the set of call-preserved registers. Check the current PC, and find the set of
locationsS used in the register save area at that position in the codeR betthe set of
registers associated to the elementS.iror all the registers iR, check the register map
corresponding to the current PC:

— if found, the mode can be obtained from the map
— if not found, the register is unused

e SetCtoC\R

e Take the return address, and consider the preceding stack frame. Check the register map
corresponding to that address, looking for the registers which &@e/R. For the registers
found in the map, which are i@, the mode of those registers can be obtained from the map.
Remove those registers froth For all the registers found in the map, which ar&jrthe
map supplies the mode for the matching location§.oRemove those locations from the
setS. After the map is analysed, add &the set of locations in the current register save
area. LeR be the set of registers associated to the elemersiRepeat this whole point,
taking successive return addresses and frames, until the stack is completely scanned.

The rough algorithmic description above can be substantially altered or optimised, depending on
the characteristics of the microprocessor in use, the ABI specifications, and particular features or
conventions in the system. Nonetheless, it should offer a basic idea of the way in which pointers
can be found in registers and the register save areas. The time complexity is order the time used
to explore the register maps multiplied by the number of locations in the save areas on the stack.

8.4.2 Stack and heap

As shown in the previous section, finding pointers in registers and register save areas can be rather
complex, but can be accomplished by reconstructing the way in which pointers are successively
saved in frame locations by the various routines across nested calls. Determining where pointers
are in the remaining portions of the frames, and in the heap, is considerably easier, although
some attention must be paid to those portions of the stack frames that act as an interface between
different routines, specifically arguments and return values. In that case, a mode indication exists
in both the maps of the caller and the callee, as also explained in Sé&cHorFor instance,

let us assume that the caller is passing an argument to the callee, using a memory location on
the stack. While the argument is being prepared by the caller, the mode for the corresponding
location can be obtained by checking the maps associated with the caller. The call instruction is

8 Runtime Module 122

then encountered, and execution continues in the callee. The mode for that very same location
can now be determined by checking the maps of the callee.

That leads us to a simple scheme that can be used to discover pointers in the parts of the frames
used by arguments. When a pointer discovery is requested, the PC saved in the context is used
to find the most recently activated routine. For that routine, the associated maps can be used to
determine the mode of both the incoming and the outgoing arguments (if any), in the topmost
stack frame. Once that is done, the previous return addresses are considered in succession. For
each of them, the maps corresponding to each return address can be used to determine the mode,
in the corresponding frame, of the incoming arguments only, since the outgoing arguments have
already been analysed as incoming arguments for the previous level. Very similar considerations
can be made for the locations reserved for storing return values.

Apart from the cases of arguments and return values, the remaining portions of each stack
frame, described exhaustively in Chapéecan be analysed by considering the maps of a single
routine, in isolation. Even if an automatic variable is modified by a nested routine, for example,
the mode of the associated location, in a statically typed language, will not change. A pointer to
some sort of object, for instance, will remain a pointer regardless of the specific object which is
being pointed to. Discovering the mode of stack-allocated automatic variables, temporaries and
other frame components is therefore fairly easy.

Finally, discovering pointers contained in heap blocks is trivial, if the heap manager maintains
the association between each heap block and the descriptor that was specified at allocation time.
Finding the pointers is therefore just a matter of scanning the descriptors for each block. The
pointer information so obtained about the heap, and the one obtained about the various parts of
the stack frames and the registers, can then finally be passed to the service routine, which will
perform the heap manipulations it requires.

8.5 Ciritical sections and foreign code

Even though PC maps can support, in theory, preemption at any program location, practical issues
might limit this ability. Certain portions of code, for instance inlined heap allocations (see Shivers
et al. [SCM99 for useful information), might need to be atomic (“critical sections”). Using write
barriers, while using generational GC, presents similar problems: moving a heap block between
a card marking and the actual write will almost certainly cause problems. Critical sections can be
dealt with fairly easily using software or hardware breakpoints. If an interrupt is received while
the program counter is within a critical section, a breakpoint can be inserted on-the-fly right after
the critical section, and control returned. Other techniques are also possible, like completing the
critical section manually, for example using emulation, step-by-step execution, or running some
external code that performs the same function.

A more complex problem can arise when linking code generated by the customised compiler
and “foreign” code compiled with a standard compiler, and that has no maps associated with
it (for instance system code or generic libraries). If the microprocessor is interrupted in such
foreign code, there might be not enough information to determine the location of all the pointers

8 Runtime Module 123

currently in use. If code with and without PC maps can be arbitrarily mixed, the presence of
foreign stack frames might cause problems while reconstructing the pointer information even if
the microprocessor is interrupted in code for which the related information is available.

For instance, the address of a routine which has PC maps could be passed to a foreign routine,
as a callback address. If the foreign routine later calls the routine whose address was passed,
and an interrupt occurs during the execution of the latter, a foreign frame will be present on the
stack even if the interrupted code has PC maps associated to it. It is therefore necessary to deal
appropriately with those cases. The two possible alternatives are either treating the content of
those foreign frames conservatively, or deferring the execution of the service routine until there
are no longer foreign frames on the stack, so that an exact analysis can be performed.

Fisher and ReppyHR] rely on a partially conservative analysis, treating all foreign values as
possible pointers. Their GC is mostly-copying. The choice of Stichnoth 8BC99, instead, is
to return control immediately to the running thread and retry after a while. If, in the meantime, the
thread reaches a point known to be GC-safe, such as an allocation or a synchronisation routine,
GC can proceed immediately. Such an approach, while effective in practice, might needlessly
prolong the latency before the service routine is executed.

A possible alternative, implemented in the prototype discussed later, is to scan down the call
chain looking for a return address which guarantees the ability to reconstruct pointer information.
This technique was used by Moss and Kohler in the Trellis/Owl sysi¢K8[7]. In practice, this
amounts to looking for a group of contiguous stack frames corresponding to code with PC maps,
without foreign stack frames in between. The return address that would reactivate the topmost
stack frame in that group is then saved and replaced with a custom handler, and control is re-
turned. Execution can then continue at full speed through the remaining foreign code until the
microprocessor is about to return to code produced by the customised compiler, at which point the
control flow is automatically intercepted by the runtime module, thanks to the patched return ad-
dress. Finding the best return address to patch, in practice, can be rather difficult considering that
part of the dynamic call chain can be in kept in registers, according to the peculiar conventions of
the specific microprocessor. The case of the SPARC is particularly interesting in this regard, and
more details about this aspect are available in Se&idri

As a particular case, if a foreign routine stores a pointer to a heap block in its global area (a C
static variable, for instance) and returns, such a pointer will be, as far as the runtime system is
concerned, invisible. That might lead to unexpected consequences, like the premature release of
a memory block still in use. A limitation that must be enforced while using pre-existing code,
therefore, is that the called foreign code must not privately store copies of pointers to heap blocks
passed as parameters.

Continuing execution in foreign code, until an instruction “safe” enough to perform GC or
similar operations is encountered, is a viable technique if a single thread is in use. However,
great care must be taken if multiple threads are simultaneously active, and each of them can
run foreign code at any time. In that case, continuing execution in one of the threads might
cause a situation of deadlock if the resumed thread requires resources that are held by one of
the suspended threads. A careful analysis is required in that case, with the possible addition of
supplemental synchronisations or particular scheduling techniques in order to prevent deadlocks.

8 Runtime Module 124

It should be underscored that the issue only arises when mixing together code generated with
the customised compiler and foreign code. Having suitably adapted libraries, compiled with the
customised compiler, would allow every instruction in the libraries to serve as a safe point as well,
and support for multithreaded applications would be straightforward.

The simple things you see are all complicated.
— Peter Townshend , lyrics in “Substitute”, 1966

Chapter 9

Implementation

In order to expose the hidden technical challenges that might be faced by those wishing to imple-
ment a system like the one described, an experimental implementation was created using GCC. A
notable characteristic of the test implementation is that only the compiler back end was modified,
which allowed the system to be tested using sample programs written in multiple languages. In
particular, C, Pascal and Ada were used to write test programs, and PC maps were also created,
with some limitations, for C++ and Java code. Itis the first time that a system able to generate PC
maps for multiple languages is described in the literature.

The test implementation was created by customising the back end of recent versions of GCC
(development started with version 2.95.2 and continued up to version 3.3.3). The output of the
customised compiler was then postprocessed, assembled, and linked with the runtime module,
which offers the required interface with a sample service routine. A complete diagram of the
system will be presented shortly, together with a detailed description of the most relevant imple-
mentation techniques used in the project. In order to introduce properly the working environment,
the GCC compiler suite will be now briefly introduced, with particular regard to the aspects rele-
vant to the creation of PC maps.

9.1 GCCin brief

GCC (GNU Compiler Collection) is a very large and sophisticated piece of software, which com-
prises, in recent distributions, something in the region of three million lines of code, excluding
optional front ends like Pascal and COBOL. The resulting compilation infrastructure is able to
generate code for several different microprocessors, conforming to the calling conventions of
multiple operating systems, from a number of high-level languages. It is even possible to create
on a given platform X an executable version of GCC that will run on a different platform Y and
that will produce code for a third platform Z.

125

9 Implementation 126

It would be impossible to achieve this flexibility without a careful modularisation of the whole
system. GCC employs separate description files for each front-end, back-end and operating sys-
tem, in order to produce a separate compiler for each triplet. Each of those compilers works, from
a logical point of view, according to the simplified diagram shown in figuiel

Register
Transfer
Language

Tree

High level representation

source " Assembly code
Rewriting

core

Front end Back end

Back end
description

Front end
description

Figure 9.1.1 : Stages of compilation in a GCC compiler

The high-level intermediate representation, a set of tree data structures, contains a source-
language-independent description of the high-level program. The original source file is trans-
formed into an abstract form that still refers to complex types, records, arrays, case statements
and so on, but in a way that is no longer tied to the source language. The high-level intermedi-
ate representation is then transformed into a low-level register transfer form, in which the high-
level constructs are translated into simpler forms that use primitive data (integers, floating points,
pointers) and simple operations, such as basic arithmetic, tests and jumps. The register transfer
representation is then optimised and reorganized multiple times, according to the microprocessor
characteristics, until the final assembler code is generated.

The front-end and the back-end perform the relevant transformations according to a modular
description of the source language and the target microprocessor architecture, respectively. Those
descriptions are composed of a mixture of macro definitions, fragments of C and specialized data
files. The interface between GCC and the descriptions is cleverly designed to keep into account
almost every conceivable feature of modern languages and microprocessors, so that new, even
if very unusual, languages and microprocessors can be supported just by designing a suitable
description. In particular, the main part of a back-end specification can usually be implemented
by writing just three files, totalling about 5,000-20,000 lines, depending on the complexity of the
architecture.

9.1.1 GCC and the Register Transfer Language

The internal low-level representation of the compiled program is contained in data structures that
can be handled using a set of specialised functions and macros. This internal representation is
normally never fully translated into a human-readable form. However, for debugging purposes, it
is possible to obtain a diagnostic dump of most of the structures, which are displayed in the form
of a list of LISP-like expressions. A similar form is also used in one of the files of the back-end
description, and it is converted into internal structures only once, when the compiler is generated.
Describing in full detail the register transfer language is beyond the scope of this thesis, but some
examples will be necessary in order to clarify the techniques used.

Let us consider the following fragment of C code:

9 Implementation 127

void abc() {
long a=0x2ba76dc2;
short b=0x47bd;
char c¢=0x5¢;

}

This is the RTL dump of the three assignments during the initial stages of compilation (on the x86
architecture):

(insn 9 6 12 (set (mem/f:SI (plus:SI (reg:SI 38 virtual-stack-vars)
(const_int -4 [0xfffffffc])) 0)
(const_int 732392898 [0x2ba76dc2])) -1 (nil)
(nil))
(insn 12 9 15 (set (mem/f:HI (plus:SI (reg:SI 38 virtual-stack-vars)
(const_int -6 [O0xfffffffa])) 0)
(const_int 18365 [0x47bd])) -1 (nil)
(nil))
(insn 15 12 18 (set (mem/f:QI (plus:SI (reg:SI 38 virtual-stack-vars)
(const_int -7 [0xfffffff9])) 0)
(const_int 94 [0x5e])) -1 (nil)
(nil))

The translated code seems quite complex, but it can be easily by explained analysing the various
nested subexpressions. The shown expressions are organized in a doubly linked list of instructions
(“insn™). The first of the three numbers is an identification number assigned to the current insn,
the second one is the insn preceding and the third one is the insn that follows in the chain. Each
of the three instructions is an assignment (“set”) to a memory location (“mem” subexpression) of
a constant (“const_int 732392898", for example). The memory access subexpression is obtained
by adding to a base pointer, contained in the virtual register number 38, an offset (const_int -4,
for example, in the first insn).

A crucial aspect of that RTL code is the existence of well-defined low-level primitive types
(SI-Single Integer for 32-bit, HI-Half Integer for 16-bit, QIl-Quarter Integer for 8-bit and so on),
that are used by the back-end to find the most appropriate expansion for each of the various
subexpressions during the various passes, until the final assembler code is generated. RTL defines,
and is able to handle, a variety of primitive types. The available ones include integers of various
sizes, from a single bit to very long 32-byte integers, various sizes of floating points (currently
up to quadruple-precision), arbitrary memory blocks and even complex numbers, just in case the
target architecture offers hardware support for them.

However, not all of these primitive types need to be available or defined in the target machine
code. If a certain data size is not available, GCC will automatically restructure the operations
in order to use the available hardware characteristics of the target microprocessor. For instance,
if the back-end description informs GCC that the microprocessor is able to perform a Sl (32-bit)
sum directly, the corresponding code will be used, otherwise the SI sum will be automatically split
into multiple 16-bits sums, and so on. In that way, advanced features of each microprocessor can
be used in an optimal way, while less powerful microprocessors can perform the same operations

9 Implementation 128

using more instructions. Those low-level primitive types are called, in GCC terminology, “ma-
chine modes”. It will be our task to convert those machine modes (SlI, HI, QlI, etc.) to the modes
necessary to perform the memory manipulations required by the system routine. In the cases
of garbage collection, persistence and homogeneous migration, we are interested in determining
where pointers are. The modes required, therefore, will be “pointer” and “scalar”.

Within GCC, a specific machine mode (named “Pmode”) is reserved for the handling of point-
ers. The compiler, however, makes no assumptions on the structure of Pmode, and relies on the
back end description of the target architecture to determine the concrete representation of point-
ers. What usually happens in practice is that Pmode is redefined, in the back end description, as
an integer of a certain size (usually 32 or 16 bits) and pointers become, from that point on, just
ordinary integers.

For example, in the RTL fragment already encountered:

(insn 9 6 12 (set (mem/f:SI (plus:SI (reg:SI 38 virtual-stack-vars)
(const_int -4 [O0xfffffffc])) 0)
(const_int 732392898 [0x2ba76dc2])) -1 (nil)
(nil))

the qualifier used for memory references is Sl (32-bit), and the pointer arithmetic is performed
using the same size. Distinguishing pointers without passing additional information from the
front end, or customising the internals of GCC, may seem at first a bit difficult. Luckily, one of
the many features of GCC can be used in unexpected ways to achieve similar results, as will be
shortly explained.

9.1.2 Rule rewriting

To understand the kind of modifications that need to be applied to the back end description, it is
useful to show how the main machine description file is organized.

The file “sparc.md”, one of the files that comprise the SPARC back end description, contains
a series of RTL fragments, and C fragments, that define how the various passes of GCC should
reorganize and optimise the generated RTL, in preparation for the final code generation. The
rules are quite difficult to explain, and sometimes can be very involved. A very simple example
is shown in Figuré®.1.2 on the next page.

9 Implementation 129

(define_insn "*movsi_insn"

[(set (match_operand:SI 0 "nonimmediate_operand" "=r,f,r,r,r,f,m,m,d")
(match_operand:SI 1 "input_operand" "r1,'f,K,J,m, !'m,rJ,'£,J"))

"(register_operand (operands[0], SImode)

|| reg_or_0_operand (operands[l], SImode))"

||@

mov\\t%1l, %0

fmovs\\t%1l, %0

sethi\\t%%hi (%al), %0

clr\\t%0

1d\\ts%1, %0

1d\\t%1, %0

st\\tsrl, %0

st\\t%l, %0

fzeros\\t%0"

[(set_attr "type" "move, fpmove,move,move, load, fpload, store, fpstore, fpmove")
(set_attr "length" "1")])

Figure 9.1.2 : Expansion rule in GCC

The rule “movsi_insn” specifies what are the right fragments of assembly code to emit for a
simple move of a 32-bit value from any place to any other place. The second and the third line of
the rule (enclosed in square brackets) specify the generic pattern of the RTL expression that can
be expanded by this rule. In this case, the expressions of the form “(set (operand0) (operandl))”
will be considered for this rule and, if the further constraints specified are satisfied, the rule will
be applied. The part inside theatch_operand” subexpression specifies further restrictions, and
the lists of codes for the two operands help GCC to select the most convenient expansion among
those listed below. For instance, to move a 32-bit value from memory to a register, the fifth
expansionid %1, %0, will be selected. Each expansion can be simply a portion of text, which will
be printed as part of the final assembly code, or the output of a C code fragment, that can replace
the matching RTL expression with more sophisticated expressions. For example, in the following
rule for the assignment of a sum between two Sl values, the case in which one of the addends can
be contained in a 13-bit constant can be rewritten in a special, more efficient, way:

(define_expand "addsi3"
[(set (match_operand:SI 0 "register_operand" "=r,d")

(plus:SI (match_operand:SI 1 "arith_operand" "$r,d")
(match_operand:SI 2 "arith_add_operand" "rI,d")))]

nn

if (arith_4096_operand (operands[2], SImode))
{

if (GET_CODE (operands[l]) == CONST_INT)

emit_insn (gen_movsi (operands[0],

GEN_INT (INTVAL (operands[l]) + 4096)));

else

emit_insn (gen_rtx_SET (VOIDmode, operands[0],

gen_rtx_MINUS (SImode, operands[l],
GEN_INT (-4096))));

DONE;

")

The rewriting engine used by GCC is definitely quite sophisticated and the array of techniques

9 Implementation 130

used to improve the final code quality is impressive. It is possible, for instance, to specify how
expansions can be split into multiple segments, so that expansions for different expressions can
be interleaved in order to improve pipelines efficiency in the microprocessor. It is also possible
to define which are the functional units of the microprocessor, how they work and the cost of the
various expansions, so that GCC can automatically optimise the usage of the various functional
units and improve the overall code efficiency. Window registers, delay slots and other possible
microprocessor peculiarities are all taken into account.

9.2 The compilation process

The diagrams in Figur®.2.1and Figured.2.2describe the compilation process in the test imple-
mentation, which follows the general discussion of the previous chapters. For each source file, as
shown in Figured.2.], the compiler generates, as usual, the corresponding assembly code and the
optional debugging information. The customised back end, alongside the usual output, inspects
the compiler internals during the final code generation stage, in order to generate local informa-
tion about the use of registers and stack slots at every machine instruction, plus information on
the structure of prologue and epilogue, arguments, and return value. The complete output of the
customised compiler is then passed on to a postprocessing stage, which performs the liveness
analysis described in Chapter The resulting PC maps, in the form of assembler directives, are
then assembled, together with the rest, and a single object file is created. The advantage of having
a single file containing both the compiled code and the related data structures (the PC maps used
for pointer discovery) is that it is possible to maintain a symbolic association between code and
maps, using the symbol tables embedded in the object code, which simplifies the later stages of
the compilation process.

Assembly code Assembly code

Liveness [7
Loc.annotations 1 Analysis |2 Ptrs map & info Assembler Object file
1

Debugging info Debugging info

> Source Code y COMPIler

Custom
Back end

description

Figure 9.2.1: Compilation of one source file in the customised compiler

Once all of the object files have been created, it is possible to proceed with the creation of the
executable file. The process is shown in Figlr2.2 The various object files are inspected,
using thenm utility, in order to determine which routines have a PC map associated to them. A
table is then built, associating the address range of each routine with the address of the PC map.
Whenever execution is preemptively stopped, to run a system service, the master table is inspected
to find out whether the current address is within a routine compiled with the customised compiler,

9 Implementation 131

and if so where are the corresponding PC maps. Once that is done, pointer discovery can proceed.

o;\

bject file

R Object file

reae Object file Synthesis Object file
sans Object file Master Object file
Table

Object file

Object file

I

Linker
Final Executable

Master Table)

> Runtime Module

> Libraries

NANS

Figure 9.2.2 : Generation of the final executable in the customised compiler

The master table is then linked together with the various object files, the runtime support for
pointer discovery, and some general purpose libraries. The end result is a single file, that contains
both the executable code and the additional infrastructure. In this implementation, some of the
libraries and the runtime module are linked statically, while some additional libraries are loaded
dynamically. At least in principle, it would be equally possible to link the runtime module dy-
namically as well, or even to load or change the program services at runtime, so that the very
same executable can acquire different functionalities (garbage collection, persistence, and so on)
depending on the running environment, or even change them on-the-fly.

The current runtime module has an overall structure very similar to the one shown in Figure
8.2.1(in Section8.2). The precise details of the runtime implementation, and the various compo-
nents described above, will be now described together with the specific techniques used by each.
To begin with, the following section offers some insight into the actual implementation of the
customised GCC back end, and in particular the extraction of the local mode information for each
assembly code instruction.

9.3 Extracting the mode information

Extracting the mode information for registers, and stack slots, used by individual assembly in-
structions, requires an inspection of the internal structures used by the compiler while generating
the final code. While designing a new compiler, it should be fairly straightforward to add the
necessary infrastructure. However, dealing with an existing compiler can be, in general, a much
more complex task. First of all, it is necessary to make sure that pointer information is preserved

9 Implementation 132

accurately in all the relevant cases, and modifications should be made where that is not the case.
The resulting assembly code could be generated without following formal methodologies, and
reconstructing the association between the uses of registers and the internal structures of the com-
piler, for instance, might be difficult. Finally, modifying the compiler code in order to emit the
required information might involve altering substantial portions of the existing code, requiring
considerable work and possibly introducing maintainability problems.

Inthe case of GCC, pointers are internally manipulated using the special machine mode “Pmode”
(Section9.1.1), and most of the infrastructure necessary to distinguish pointers from scalar values
is already present. The segregation of pointers is rather strict, except in some special cases listed
in Section9.8. The way in which the infrastructure offered by Pmode can be used to distinguish
pointers from scalars is discussed in Secfidh 1

In order to discover pointers at the level of detail of the single instruction, an additional liveness
analysis might be necessary, as explained in SedtibtnHowever, reconstructing the required
liveness information for registers and stack locations during the compilation process might be
rather difficult. The code generation in GCC, as seen in Se&ibr® is driven by a number
of rewriting rules, optimisation descriptions, and other architecture-dependent definitions. All of
those components are contained in a small number of architecture description files, which control
the back end for a specific architecture. The final stages of the code generation are controlled by
expansion rules, such as theoVesi” rule in Figure9.1.2 on pagel29, which can generate an
arbitrarily long sequence of assembly instructions for each part of the RTL representation. The
expansion is often represented by a piece of text, which is written in the output assembly code
file, using pattern substitutions for some operands. As an alternative, the generated code can be
the result of the execution of small fragments of C code, which are embedded in the expansion
rules. Reconstructing on-the-fly the full life of registers and stack slots across those expansions,
which can be more or less arbitrary, during the code generation stage would be rather difficult.
In order to keep the complexity of the task under control, therefore, the liveness computation
analysis has been delegated to an external postprocessing stage, while all that is required from
the customised compiler is the detection of the mode of registers and stack slots locally to each
assembly code instruction. The computation of the liveness information follows the model exten-
sively discussed in Chaptér Before describing the way in which the mode information for each
assembly code instruction was extracted, it will be useful to explain the the way in which pointers
can be distinguished from scalars using GCC.

9.3.1 Partial integers

A crucial aspect of the mode extraction, naturally, is the ability to distinguish pointers from scalar
values. In its internal representations of user programs, GCC associates to each expression a
“machine mode”, which indicates which low-level representation that expression wilStesg [

For instance, a register can be used in mode “SI” (Single Integer) to refer to the manipulation
of a 32-bit integer quantity, or the same register could be used in mode “QI” (Quarter Integer)

if only 8 bits of that registers are used as an integer. Several different modes are supported
by GCC, ranging from bitfields to large integers, floating points in various precisions, memory

9 Implementation 133

blocks, condition codes and even complex numbers. The compiler will try to use the available
characteristics of the current target machine, rearranging the code if certain modes or operations
are not supported natively. The available features of each specific machine are described using
some machine definition files, which form the machine-dependent part of the back end.

The ability of GCC to support many different microprocessors implies that the same compiler
must be able to deal with all the peculiarities and special requirements that some microprocessor
architectures may have. In particular, a little known, and little used, feature of GCC is its support
for “partial integers”, which is sometimes used to support those machines which have particular
requirements for accessing their addressing space. For instance, while having 32 bit registers,
certain machines could only be able to use 24 bits for memory addresses. Some machines could
use a 16-bit register to address an 18-bit wide memory space, considering two additional lower
bits as always zero. When the transformation between the numerical value of pointers and scalars
is non-trivial, GCC allows the use of “partial integers” to indicate that only a restricted number of
bits of an integer value can be used to represent a pointer. In those rare cases, GCC supports the
necessary conversions between partial and conventional integers, and uses a separate set of rules
to manipulate partial integers.

For all of the most common architectures, however, the GCC back ends simply manipulate
pointers as normal integer values. All the rules and code generation schemes contained in the back
end only ever refer to integer values and the distinction between pointers and non-pointers is not
present. The mechanism used in this prototype was the reintroduction of the distinction between
pointers and scalars in the back end, using the mode PSI (Partial Single Integer) to represent
32-bit pointers and the mode Sl (Single Integers) for 32-bit scalars, even if such a distinction
is not ordinarily present in the SPARC back end. The entire back end, in consequence of this
modification, had to be thoroughly reviewed and adapted, since the possible RTL intermediate
expressions produced during the code production and optimisation were how sometimes, but not
always, referring to PSI values rather than Sl, depending on the context. In many cases, RTL
rewriting rules had to be substantially rewritten, or reproduced in multiple variants, according to
the mode of the operands.

The distinction between integers and pointers, after the modifications, was enforced by explicit
conversion patterns that GCC allows the back end to define. By controlling the operation of those
patterns, it was also possible to keep under control conversions from scalars to pointers and vice
versa or, where applicable, embed additional code in the output file to perform operations related
to the conversion. The distinction is enforced everywhere by GCC except in certain cases, as ex-
plained in Sectio®.8. In general, nonetheless, the distinction between PSI and Sl values reflects
with a very high degree of fidelity the distinction between pointers and scalars, and that distinc-
tion was used while extracting the mode information for the individual assembler instructions, as
explained in the next subsection.

9.3.2 Customised expansions

In order to extract the local mode information, the code expansions were maodified in order to gen-
erate, alongside the assembly code, additional annotations. In the previous i” expansion

9 Implementation 134

pattern (in Figure.1.2), the instruction that is generated to move a 32-bit value from memory

to a register isid %1,%0. Thes0 ands1 are substituted, during the code generation, with the
actual operands used during the expansion, so that the proper assembly instruction is produced.
Other formats are available as well, and it is also possible to create custom ones. The back end
was therefore modified, adding new formats, which are able to inspect the internal structures of
GCC, using the standard interface between GCC core and back end. For example, the original
expansion for the SI move can be transformed into:

(define_insn "*movsi_insn"
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,f,r,r,r,f,m,m,d")
(match_operand:SI 1 "input_operand" "r1,!'f,K,J,m,!m,xJ,!'£,3"))
" (register_operand (operands[0], SImode)
|| reg_or_0_operand (operands([l], SImode))"
"e
mov\\t%1, $0\\n### %21%70
fmovs\\t%1, %0\\n### %21%Z0
sethi\\t%%hi (%al), $0\\n### %$z21%720
clr\\t30\\n### %20
1d\\t%1, $0\\n### %21%Z0
1d\\t%1, $0\\n### %$z1%70
st\\tsrl, $0\\n### %$z1%70
st\\t%1, $0\\n### %z1%20
fzeros\\t%0\\n### 20"
[(set_attr "type" "move, fpmove,move,move, load, fpload, store, fpstore, fpmove")
(set_attr "length"™ "1")])

The custom formatsz andsz are used to print in the output file annotations about the use of the
operand at that point. The formats is used when an operand is read and the formathen

an operand is modified. The handlers for those formats, in the customised back end, automati-
cally inspect their operand, extract the mode and print the relevant annotations. For instance, if
the operand is a memory access, the expressions involved in the address calculations are recur-
sively inspected and the appropriate annotations generated. The resulting annotations are printed
on a special comment line, which follows the instruction to which it refers, with the following
meaning:

> aregister is read as a pointer

A aregister is written as a pointer
aregister is read as a scalar

aregister is written as a scalar

For example, in the simple C program:
long mov(long *p) { return *p; }
the body of the function is expanded, if no optimisation is applied, into:
i0, [%fp+68]
$fp+68], %92

921, %92
mov %92, %i0

9 Implementation 135

With the additional annotations, the result becomes:

st %10, [%fpt+68]
>%10

1d [%fp+68], %g2
"%92

1d [%92], %92
#H# >%92 #%92
mov %92, %i0

4 %92 #%10

In the example, no additional annotation is printedsar since we know that the register always
contains a pointer, during the entire program execution.

The architecture-dependent definitions, contained in the back end description files, that refer to
prologue and epilogue generation have been similarly customised, so that the annotations regard-
ing arguments, return values, and saving and restoring of registers are properly generated. The
following section explains in some more detail the way in which registers are used in the stan-
dard SPARC ABI, and the information that is necessary to save in the SPARC v8 ABI in order to
discover pointer usage in prologue and epilogue.

9.4 Pointer discovery in the registers

9.4.1 Registers in the SPARC ABI

According to the standard ABI for the SPARGHa92 Spa94, the general-purpose registers
visible at any time to the programmer are divided into four groups of eight registers each: input,
output, local, and global. Those registers are just a subset of the real, larger bank of physical
registers contained in the microprocessor. When a new routine is called, the “window” of visible
registers is changed so that the names used by the user program to refer to registers refer to
different registers. That allows the program to achieve the same effect as saving some registers
while new, unused registers are made available. In the SPARC, the output registers (used as
outgoing arguments) are renamed and become available to the callee as input registers, while two
new banks of local and output registers becomes available. Global registers are unaffected by
the register renaming. The callee freely uses the new local and output registers, and fetches its
arguments from what are now the input registers. The final results are left in the same registers
and, when the routine ends, a renaming in the opposite direction takes place: local and output
registers are discarded, and the input registers are again visible as output registers. The previously
hidden local and input registers of the caller are made visible again. The results are therefore
available, at the end, in what the caller sees as the output registers.

Some registers are reserved: the first global register, %90, is always zero; the last output register,
%07, is used to save the return address during calls. Output register %06 is the stack pointer (also
named %sp), while input register %i6 is used as frame pointer (also named %fp). This particular
choice causes the frame pointer and stack pointer to change role each time the register window is

9 Implementation 136

shifted, so that the stack pointer of the caller coincides with the frame pointer of the callee. Also,
the address of the call instruction, which is %07 at the beginning of the prologue, is accessible
as %i7 in the body, between the two window shift operations. No local register is reserved for
special purposes.

Every routine finds its first six parameters, after the window shift, in %i0..%i5, and the remain-
der (if any) on the stack. All six registers are assumed to be volatile across routine calls. Register
%07, which usually receives the return address during a call, is also used as volatile temporary
storage, in between calls. For what concerns global registers, the manual of the SPARC V8 (ap-
pendix D) says: “The convention used by the SPARC Application Binary Interface (ABI) is that
%g1 is assumed to be volatile across procedure calls, %g2..%g4 are reserved for use by the ap-
plication program (for example, as global register variables), and %g5..%g7 are assumed to be
nonvolatile and reserved for (as-yet-undefined) use by the execution environment.” GCC uses
%g1..%g4 as volatile temporary valdeand never touches %g5..%g7. Floating point registers,
in the SPARC V8, are used as temporary values or result values (oddly, not to pass arguments),
exclusively to store floating point values. They can be therefore safely ignored as far as our mode
analysis is concerned.

It should be noted that the SPARC V9 architecture, in 64-bit mode, uses registers differently. In
particular, the SPARC 64-bit ABI allows the user code to use registers %g2/%g3 as application
registers, while %g6/%g7 are used as OS registers. Also, in certain circumstances, floating point
registers are used as general purpose registers, which includes parameter passing (so a floating
point registercan contain a pointer). This preliminary implementation, however, refers exclu-
sively to the SPARC V8 32-bit ABI$an9q(.

Leaf routines (routines that do not call any other routine) usually do not perform a window shift,
but directly use output registers (containing the parameters) and the global registers as scratch
registers. A window shift can however be performed if some stack space is necessary (the window
shift instruction is also used to allocate stack space) or if there would be too few free registers
available without performing the window shift.

Summarising:

e For optimised leaf routines no stack space is allocated. Registers whose modes are only
defined by the current routine are %00..%05, %07 and %g1..%g4, while registers %I0..%I7
and %i0..%i5 have their mode defined by the caller.

e Non-optimised leaf routines and non-leaf routines will locally define %I0..%I7, %00..%05,
%07. Registers %g1..%9g4 and %i0..%i5 (the parameters) are assumed to be volatile across
calls and are therefore defined locally as well, be they parameters or local values. Conse-
guently, no registers have their mode defined by the caller while the body is being executed.
As will be shortly discussed, in the prologue before the window shift and in the epilogue

1l ocal registers %l1 and %I2 are used by the hardware when traps (including interrupts) take place. However, the
registers are only used after a window shift is automatically performed and are therefore new registers, private to the
trap handler. The local registers of the interrupted routine are really unaffected.

2|f lexically nested routines are used, register %g2 stores a pointer to the static call chain, in conjunction with the
“trampoline” mechanism described in Secti®ri2 In that case %g2 does not contain pointers to heap objects, and
can be ignored with regard to pointer discovery.

9 Implementation 137

after the window shift the modes of registers %I0..%Il7, %i0..%i5 are defined by the caller,
with the same name they had there. Registers %00..%05 contain parameters/return values,
and will become %i0..%i5 inside the body. Register %07 is the return address (and as such
it is reserved).

Finding the mode of registers is therefore particularly easy, since all the information is completely
local most of the time. Whenever there are globally defined registers, it suffices to check the
tables corresponding to %i7 (the caller’s return address) to find the modes of %I0..%I7, %i0..%i5,
without any need to perform register renaming. The remaining registers have either fixed use
(%i6, %i7, %06, %g0, %g5..%497) or their mode can be determined locally, either because they
are parameters/return values or because they are used as temporary values.

9.4.2 Prologue and epilogue

Particular care must be adopted while dealing with the prologue and epilogue. It is necessary to
determine, for each instruction, which registers have been saved, and for which ones the mode can
be determined by considering the local tables. In the case of the SPARC V8, the situation is quite
simple. In the standard implementation of prologue and epilogue generation, in recent versions
of GCC, no register which is used to store temporary values can ever contain pointers to heap
blocks. Additionally, the renaming takes place in a single step, using the standard instructions
SAVE andRESTORE. Between the occurrences of the two instructiogis/t in the prologue and
RESTORE in the epilogue) there is no visible register whose mode depends on the caller, because
of the previous discussion. In leaf functions, or in non-leaf functions outsideAfERESTORE

pair, the mode of registers %I0..%I17, %i0..%i5 can be discovered by looking at the tables referring
to %i7 (the return address). The only other registers that can contain pointers to data blocks are
those used as incoming arguments or for the return value. WithiW&/RESTORE pair, %i0..%i5

are the registers that can be used as incoming arguments, and %i0 as the return value. They
assume the names %00..%05 and %00, respectively, outsidethRESTORE pair. The mode

of those arguments and return value also represent the initial and final modes of registers in the
routine body, and as such are used in the implementation of the liveness analysis described in
Chapters. Summarising, for the SPARC V8 architecture, the only data structures necessary for
prologue and epilogue are: a flag that tells us wheth®E/RESTORE are actually used in this
routine, and the offsets in the code of the/E andRESTORE instructions. The only remaining
information necessary to perform the pointer discovery in the registers can be obtained from the
data structures related to the routine body, specifically the modes of registers throughout the body,
and the modes of incoming arguments and return value.

3This analysis refers to the use of register windows detailed in the SPARC V8 ABI. GCC also supports an alternative
“flat” model which does not use register windows, saving instead the registers on the stack. This less common model,
which is however compatible with the general calling conventions, is more closely related to the traditional stack-saving
technique used in other microprocessors, and was not considered in this implementation.

9 Implementation 138

9.5 Implementation of the liveness analysis

The assembly code file, containing the code and the additional annotations, is postprocessed by a
custom analyser, which implements a liveness algorithm similar to the one described in Ghapter
The local annotations available for each assembly instruction, the information obtained about the
arguments, and the information available on the return value are combined in order to reconstruct
the mode of the various registers (and of the stack slots) throughout the routine body. In detail, the
postprocessor first scans the input file and separates the assembly instructions from the annota-
tions. The assembly code is copied, unchanged, to the output file, while the annotations are stored
in memory for later processing. During a second pass, the delay slot information is analysed,
and the internal representation of the code is rearranged by following the delay slot elimination
algorithm described in Sectidh4. As a following step, the custom multi-mode liveness analysis

is performed on the data. Finally, a number of sanity checks are performed and, if everything is
in order, the liveness information can be written to the output file.

The liveness algorithm reconstructs the full mode information (whether a register is unused,
used as a scalar or used as a pointer), but the runtime module of this implementation makes use
only of the pointer information. The relevant part of the internal data structures describing the
liveness is therefore extracted, compressed in order to save space, and written to the output file.
The written data includes a header containing information on the routine (leaf/non-leaf, length of
compiled code, offset cfavE/RESTORE, and so on) plus the main table representing locations of
pointers for each machine instruction in the routine body.

9.5.1 Anexample

As an example of the results obtained by the customised liveness analysis, Figashows a
test program, written in C. The code does not perform any real function, but was written just as an
example of use of different routines which manipulate pointers and scalar values in several ways,
have different arguments and return values of different modes. An easily readable representation
of the resulting mode maps, automatically generated by a customised version of GCC 3.3.3, is
shown in Figured.5.2

Once the structures generated by the liveness algorithm are ready, it is necessary to encode them
in order to write them to the output file in a reasonably compact form. First of all it should be noted
that certain registers are reserved for specific system functions, and it would be consequently
useless to store mode information for them. For the remaining registers, the simple approach is
simply to use a bitmask for each value of the PC, in which, for example, a bit set to ‘1’ means
pointer and ‘0’ means scalar or unused. However, simple compression techniques can be used to
reduce dramatically the space required.

9 Implementation 139

typedef struct type_a {
int a;
char c¢;
int *p;
int b;
char *cp;
} type_a;j

typedef struct type_b {
unsigned int ul,u2;
type_a *al,*a2;

int *ip;

unsigned char cc;

char *pc;

} type_b;

int ping(int *);
int *pang(int,int¥*);
int pong(int*,int);
void peng(int);
int *poing(int);

type_a *some_a();
type_b *some_b();
char *some_char () ;
int *some_int ();

type_a *funl (int,type_b *,char,int,int*);
void fun2 (int, int,int,int,int, int,int);
type_b *fun3(int*,int,int*,type_a*,type_b*,char*);

void rather_complex_test (int a,int *b)
{
char *c=some_char (), *d=some_char();
int ol=a,02=a-3,03=a+t0l;
int *pol=some_int ();
type_a *tal=some_a();
type_b *ta2=some_b();
ol=1;
do
{
int 1, 3=0;
for (i=ping(b);i<ping(poing(j));i+t+) {
peng (a+ping (pang(a,b)));
while (pong(poing(a),pong(b,1))) {

if (3<91) {

ta2->cc=1+(* (tal->cp=some_char()));
peng (a-1);

03=-19;

j=pong (b,a+2) ? a*ping(b) : 0;

} else {

j=ping(pang(j,b));

break;

}
}
}

fun2 (o0l,02,03,02,01,ping(poing(02)),143);
while (pong(poing(a),pong(b,1))) {

if (3<91) {

peng (a-ta2->u2);

} else {

j=ping(pang(j,b));

break;

}

tal=funl (02-8,ta2, *c, *pol,b);

}
} while (some_b () !=fun3(some_int (), *pol+ping(pang(3,tal->p)),

pol,tal,some_b(),d));
Figure 9.5.1: Example code

The data contained in the table appears to be easily compressible. As seen in the example,
several registers are loaded with a value and the value is retained for long stretches of code, in

9 Implementation 140

which the register mode does not change. A simple run-length encoding can be therefore used
to reduce considerably the space needed by those portions of the tables. In certain cases, some

offs / pointer \/ calars pointer

DD D B B BB B B B B B B B B B B B DI DI DI DI DI DI DI DI DM DM D X X X X X X X XK XK XK XK K DK DK DK DK DK DK DK DK DK DK DK B B B B B B B B B4 B B B B B B

>

Figure 9.5.2 : Tables showing the use of registers across compiled code. A mark is present in the
column corresponding to each register if that register is used as a pointer or scalar, respectively,
at that instruction.

9 Implementation 141

registers are loaded with temporary values and used immediately. At times the same registers can
be reused over and over again, possibly changing mode fairly frequently. This last pattern occurs,
presumably, when the compiler picks the first available free register from a predefined list to hold
temporary values. Since the registers available to the allocator are kept in a fixed ordered list, the
first registers in the list tend to be used more frequently.

A suitable compression scheme might, therefore, exploit those properties to improve efficiency.
A simple compression scheme has been devised to test the degree of compressibility of the tables.
While the scheme has no pretence of optimality, the achieved results are rather interesting. A
description of the technique follows.

9.5.2 A custom compression scheme

The compression scheme adopted is a variation on the classic run-length encoding, with some
adaptations. The table that describes the use of pointers is compressed along the columns. If a
column contains only ones, or only zeros, its content is not packed, but a flag is set in a separate
word. The contents of the remaining columns are concatenated, and the resulting bitstring is
compressed using the following patterns:

Seq Len| Format Uncompressed equivalent
A 4 OXXX Verbatim: the 3 bits XXX as they are
B 10 | LOXXXXXXXX Verbatim: the 8 bits XXX as they are
C 10 | 110NNNNNNN Sequence of N+9 bits to ‘1’ (up to 136)
D 12 | 12INNNNNNNNN | Sequence of N+10 bits to ‘0’ (up to 521)

The scheme offers an easy way to deal with short bursts of rapidly changing states, while longer
homogeneous sequences can be compressed using a short representation. Substrings of one, two
or three ‘1’s can be encoded, together with some of the following bits, using sequence A, while
longer irregular bursts can be encoded using sequence B. Up to 8 bits set to ‘1’ can be encoded
using B, longer sequences are encoded using C. Up to 9 consecutive bits set to ‘0’ can be encoded
using As and Bs, longer sequences using D.

The compression algorithm works by trying to locate substrings of at at least 10 bits set to ‘0’
and substrings of at least 9 bits set to ‘1’, which are compressed respectively using sequences C
and D. All other substrings are encoded using As and Bs, so to obtain the shortest possible result.
It can be shown that the best encoding (using A and B) for substrings n bits long (n>12) is a B
plus the best encoding for the remaining n-12 bits, which makes finding the best sequence trivial.

Ifan A or a B precedes a C or D, some bits might need to be taken from the number of bits repre-
sented by the C or D in order to reach the minimal length of 3 or 8 bits respectively necessary to A
or B. The compression can be implemented so that it runs in linear time with respect to the length
of the input sequence. The final compressed bitstring is prefixed by a single additional header bit.
If the header bit is zero, the remaining part of the bit string is interpreted as uncompressed data.
That allows the encoded representation to be, in the worst case, one bit longer than the original
table. If the compressed form happens to be longer than the original data, the uncompressed table
is used instead (with one additional header bit).

9 Implementation 142

This simple technique is designed to introduce only a minimal overhead for short bursts of bits
setto ‘1’ and ‘0’ in what would be, if no pointers were ever used, a single stream of ‘0’ bits. At
the same time, longer strings of bits set to ‘1’, useful to represent registers containing pointers
that survive for some time, can be encoded using fairly short sequences. The scheme and the
compression technique probably do not achieve the best possible compression level, but are just
an attempt at a dedicated form of compression suitable for this particular application.

Nonetheless, in spite of the simplicity of the technique, the results are quite interesting, reduc-
ing considerably the space occupation of the packed tables. Although no extensive testing has
been done, the memory necessary for the register discovery tables, excluding a short fixed-size
header, was usually less than one quarter of the corresponding SPARC V8 code size. For ex-
ample, the long example of FiguBe5.2 compressed with this technique, is transformed in the
short compressed data block shown in FigBrg.3 on the next page, which also shows in its
entirety the full information that the runtime module uses to perform pointer discovery in this test
implementation.

9 Implementation 143

__TT__rather_complex_test_regTable:
--Save and restore offsets for register window shift
4 or add/sub offsets for stack pointer adjustment
.long 0x00000000
.long 0x0000022¢
--Start of body and Start of epilogue offsets
.long 0x00000004
.long 0x00000224

--Flags: saveRestoreUsed
4 retIsPtr
spMoved
.long 0xa0000000
4 --Frame size:
.long 0x00000078
4 --Outgoing params area size:
.long 0x00000068
[§idi --Number of stack slots ever used as ptrs:
.long 0x00000000
4 --Used offsets:
4 --Registers only used as scalars
.long 0xf£0706b3
4 --Registers only used as pointers
.long 0x00000040
4 --Table columns contain:
Reg/offs: %00, %01,%02,%03,%04,%10,%11,%12,%13,%14,%17,%14,%15
[§idi —--Header completed.
#H#
HH4 --Compressed table:

.long 0xc4£f7b460
.long 0x607c04dc
.long 0x10c07c02
.long Oxdcll665e
.long 0x70cbf07b
.long 0x70e370e5
.long 0x9903£433
.long 0xa73d373c
.long 0x3b70cbb7
.long 0x67605ca8
.long Oxedclb847
.long 0x026e7c03
.long 0xa7700e24
.long 0x001bb403
.long 0xbb86£800
--Table done.

Figure 9.5.3: Compressed tracking map

9.6 Discovery in stack and heap

9.6.1 Pointer discovery for the stack

Determining whether a certain stack slot in the current frame contains a pointer or not, at a given
point in the code, can be fairly easy using GCC. During the various compilation passes that
manipulate RTL expressions, all local variables and temporary values are handled by the compiler
using an unlimited number of virtual pseudo-registers. During the final stages, GCC tries to assign
those pseudo-registers to hardware registers and stack locations depending on the current level of
optimisation chosen. If a high level of code optimisation is selected, GCC will try to use hardware

9 Implementation 144

registers whenever possible, using stack locations otherwise.

Consequently, the treatment of both hardware registers and stack locations representing local
variables is actually rather similar. The SPARC, in particular, has a limited set of addressing
modes and it is relatively easy to generate annotations for stack slot access in a manner similar
to that used for registers. Each access of a single local variable or temporary value on the stack
is coded by GCC as an indirect access to a base register (either the frame pointer or the stack
pointer) plus a constant. The liveness analysis performed for registers was therefore extended
to include this case as well, using frame offsets alongside the real user-accessible registers. The
internal components of the customised back end, which inspect expressions in order to generate
annotations, were modified in order to generate annotations concerning the use of frame locations.
A single table, containing the liveness information for both those frame locations and the micro-
processor’s registers is finally generated by the postprocessor. At this stage in the development
of the prototype, it has been assumed that automatic variables are only accessed by the routine
that allocates them. The cases, described in Se6tigrin which a variable can be accessed by
different routines were not implemented, and are currently unsupported.

The simplified liveness analysis, used in the current prototype, also does not include the case
of arrays allocated on the stack. Secttii.5discusses in detail the issues related to supporting
stack-allocated arrays. While implementing pointer discovery in stack-allocated arrays is likely
to be relatively easy, the feature was not included in this initial prototype. More details about the
use of arrays are available in Chapi€x “Derived Pointers.”

9.6.2 Heap implementation

According to the general description made in Chaptea simple custom heap manager was
designed for this application. Although there are no particular reasons why an existing system
should not be used or adapted, in this particular case it made sense to design a small heap manager
with just a minimal set of features, in order to simplify the development and the debugging of the
remaining, much more complex parts of the system. At present, memory blocks are allocated
by specifying, at runtime, the layout of the block that will be created on the heap, as detailed in
Section7.1.1, and in particular where the pointers are situated in each block.

The simple heap manager does not perform any form of garbage collection, although that could
be easily added on top of the existing infrastructure. However, the manager has the ability to
compact the allocated memory, packing all the allocated memory blocks towards the bottom or
the top of the heap. Each time a compaction is performed, all the pointers to the moved blocks
present in the registers and the stack are properly updated, and the cross-pointers present in the
heap are updated as well. The memaory area previously occupied by the allocated blocks is filled
with zeroes, to make sure that, when the program is resumed, the image of the memory blocks
in use is really the one in the new location, and that the pointers used by the resumed program
have really been updated to reflect the new memory configuration. The described implementation
was successfully used in tests where linked data structures were created in the heap, and relo-
cated transparently on-the-fly multiple times. After each interruption, served preemptively, the
tests resumed their operation using the new configurations of the heap, and the updated pointers

9 Implementation 145

contained in registers, stack, and heap.

9.7 Runtime module implementation

The runtime module, from the point of view of the developer, is one of the most complex com-
ponents of the system, mainly because of the fine technical details related to the proper handling
of all the characteristics of microprocessor and operating system. Parts of the runtime system,
for example, are executed within interrupt handlers, and may need to modify system information
saved on the stack, or even to add or remove frames, preserving the integrity of the stack struc-
ture, as expected by the operating system. In certain cases, the code that needs to be executed has
critical restrictions on the way in which registers can be used, or some system information can be
lost.

The code of the runtime module, in this implementation, was written mainly in C, using some
GNU extensions to control the details of the generated code, and some portions of embedded
assembly code in the most critical code fragments. The system was implemented on Sun Mi-
crosystems SPARC machines, using the v8 ABI, using different versions of the Solaris operating
system. The current implementation of the runtime module, as a consequence, depends to a
certain extent on the specific information extracted by Solaris when a signal is sent to a thread.
Adapting the implementation to a different Unix-like operating system on the SPARC, however,
should be a mostly painless task. The intimate connection of the implementation of the runtime
with the structure and functionality of the SPARC, however, implies that a substantial rewrite of
many crucial sections would be needed in order to support different microprocessors.

When a preemptive request for a service routine is received, the first part of the runtime module
that assumes control is the signal handler. The signal handler has at its disposal the context of
the thread that was interrupted. After some bookkeeping, the value of the program counter, in
the suspended thread, is checked against the master table and the tables for pointer discovery are
located. If a table is found, control is passed to the pointer discovery code, and then to the service
routine, otherwise a few intermediate steps are required.

The runtime module implements the deferring technique mentioned in Se&Bpoffering
support to single-threaded applications. If the running thread is interrupted in a portion of code
that has no associated maps, one of the return addresses present on the stack is modified, so that
it points to a deferred execution routine, and control is returned. When the microprocessor en-
counters the modified return address, the deferred pointer discovery takes control, and the service
routine executed. In order to avoid multiple requests being deferred, a lock is held while a pointer
discovery is pending. At the end of the service routine, the running context is restored, and control
is returned to the original code. More details appear later in Segtih

The stage of pointer discovery, therefore, can either take place immediately, or be deferred
until the thread re-enters the code compiled with the customised corhditethe runtime im-

4In principle, only certain operations that can be done from within a signal handler, since many operations might
result in a corruption of system data structures. If complex operations, for instance I/O, are required during the service
routine, performing those operations from within the signal handler would be problematic. A possible approach would
be to defer the execution of the service routine, in any case, until after the completion of the signal handler execution.

9 Implementation 146

plementation there is also a provision for invoking the pointer discovery and the service routine
synchronously, if so desired, directly from the user program with an explicit call. When the main
pointer discovery component assumes control, the stack is scanned downwards, one frame at a
time, and the locations containing pointers in each frame are added to a set of locations. It may
be useful to recall that the registers in use in the user thread at the moment of the interruption
are, at this stage, saved somewhere in main memory. The addresses of the locations used to store
those registers, in case they contain pointers, are added to the previous set as well. Once stack
and registers have been processed, the heap is scanned as well. The locations containing pointers
in each heap block are added to the previous set, and the service routine can then perform the
necessary heap manipulations.

The service routine has access to the set of all the memory locations that may contain pointers to
heap blocks. In certain cases, as explained in the previous chapters, some of those locations might
contain values that appear to be legal pointers to heap objects, but are actually unused. In that
case, however, it is still possible to alter freely those values, since no live scalar value will ever
be contained in those locations. Another important aspect is that, because of the information that
the compiler maintains internally, we are only able to discriminate pointers from non-pointers,
but we are unable to distinguish statically among different kinds of pointers (to heap, to stack,
to code, and so on). It will be necessary, therefore, to check dynamically the values contained
in those locations to distinguish possible pointers to heap blocks from the remaining pointers.
In an ideal case, the compiler should be able to maintain such a distinction statically, whenever
possible, which would reduce the work at runtime. Notably, some programming languages only
allow pointers to the heap, or require a specific syntax to differentiate pointers to heap blocks from
generic pointers, but this distinction is not preserved down to the final code by usual compilers.
(Consider, for instance, Ada aliased access types).

Once the service routine has completed its job, control can be returned to the user program,
which will resume its execution. Some implementation aspects of deferring the service routine,
and of the pointer discovery, will now be discussed.

9.7.1 Deferring the service routine

The actual code that implements the deferred pointer discovery is quite complex, having to deal
with rather subtle architectural details of the SPARC. A more detailed discussion on the tech-
niques used might be interesting to have a better understanding of the implementation issues
involved. In particular, it will be shown how the presence of register windows and delay slots,
while a source of considerable complication, are no obstacle to the functionality of the system.

For instance, it is possible to create “manually” an additional stack frame in which the return address is the former
value of the PC, and all the registers have been saved on the stack, while the PC has been replaced with the address of
the pointer discovery routine. The pointer discovery, and the service routine, can then operate at the end of the signal
handler, and before execution of the user code is resumed. A simplified approach, used in this implementation, assumes
that, in a single-threaded program, if the value of the program counter refers to code compiled with the customised
compiler, then at that particular moment no system code is running, so the system data structures are in a consistent
state. Consequently, it should also be safe to execute operations that are not normally safe for execution during a signal
handler. The previous, more complex approach should be used, in theory, to fully respect the letter of the manuals.

9 Implementation 147

When a signal is received, the signal handler sets a lock that will be held while a service routine
is pending. A pointer to thecontext structure, containing crucial information about registers
and stack in the interrupted thread, is passed to the handler. In the case of the SPARC, the
ucontext contains some of the user-accessible registers, while the remaining ones are left in a
register save area on the stack. In detail, thentext stores the flags register PSR (Program
Status Registers), the program counter PC, the register nPC (whose value is to be loaded into the
PC after the execution of the current instruction), the temporary register %y (used as a scratch
register in certain operations), and the registers %g0..%g7 and %00..%07. The register %06 is
also the stack pointer, and there is a way from that value to find the most recent register save area
on the stack, containing the remaining registers %I0..%I|7 and %i0..%:i7.

At this point, it is necessary to verify whether the saved value of the program counter cor-
responds to a position in the code in which it is possible to reconstruct the location of all the
pointers to heap blocks. Superficially, it appears sufficient to verify that the PC refers to a portion
of code generated by the customised compiler. In practice, however, there might be cases in which
code generated by the customised compiler calls foreign code, which in turn calls code generated
by the customised compiler, for instance by means of a callback handler, or a pointers to a func-
tion. In that case, even if the PC points within “safe” code, there could be frames, allocated on
the stack by the foreign code, containing pointers to heap blocks, and it is not possible to discover
exactly where those pointers are.

The situation is the one represented in Figluwiel In
order to make sure that all the pointers can be discov- top frame
ered, therefore, it is necessary to wait for the user thread ot safe
to complete all of the pending foreign code, so that the
frames left on the top of the stack belong to code com- S
piled by the customised compiler. That is equivalent to
finding a subchain of the dynamic call chain that goes > safe frames
from the address within the first used routine in the cus-
tomised code, deep into the stack, up to the firstaddress U J
in the foreign code, if present. Every return address in
that subchain must refer to a routine in the code gener-
ated by the customised compiler. [Frames of code with PC maps

On the SPARC, because of the register windows, the [J Foreign frames
situation is particularly complex. The call instruction
automatically saves the most recent return addressgiyre 9.7.1: Stack containing mixed
the register %07. If a register window shift is then pekiack frames
formed by the called routine, that register becomes known
as %i7, while a new %07 is ready to accept a new return address for a further subroutine. That
implies that the dynamic chain sometimes includes %07, and at other times it does not. The reg-
ister %07 will contain the most recent return address if execution is stopped in a leaf routine, or in
a non-leaf routine before thgavE instruction, or after theEsSTORE. If %07 is used, the following
return address is in %i7, and the rest are on the stack. On the other hand, if execution is stopped
between thesavE and theRESTORE instructions in a non-leaf routine, it is %i7 that contains the

9 Implementation 148

most recent return address, and the rest are on the stack.

This peculiar situation is complicated by the fact that, in general, there is no way to tell whether
execution was stopped betweers/E/RESTORE pair just by looking at registers and stack. It
may happen that a source-level debugger on the SPARC gets confused about the stack layout,
especially when stepping through individual machine instructions. In our case, however, the
additional data structures associated with each compiled routine can be used to determine whether
SAVE andRESTORE are used, and their positions with respect to the value of the program counter.
Nothing is known, however, about the routines of the foreign code. Determining the correct
subchain of the dynamic chain, as previously discussed, is rather tricky.

As a preliminary step, we consider just %i7 and the rest of the stack, and we search for the
longest subchain with certain characteristics. We need a subchain that is entirely made up of
addresses with PC maps associated to them, and such that all of the addresses in the stack, below
that subchain, refer to foreign code. There are three possible cases:

1. A subchain was found, and it includes %i7. It means that the most recent return addresses,
excluding possibly PC and %07, all refer to “safe” code, generated by the customised com-
piler.

2. A subchain was found, but it does not include %i7. Some frames, on the top of the stack,
will have to be discarded before the service routine can operate normally.

3. No subchain was found. This might happen if the signal handler has just been installed,
but execution of the user code has not begun, yet. Alternatively, it might mean that we
were stopped while executing the main routine, or one of the routines it calls, therefore the
contents of PC and %07 must be checked.

It is now possible to determine which return address that must be patched, in order to cause the
deferred execution of the service routine. The full scheme, with all the alternatives, is as follows.

¢ If a subchain not including %i7 was found, then the return address to patch is the topmost
of the found subchain. That address will be considered when returning to our code from
foreign code. At that point, it will be safe to execute the pointer discovery and the service
routine.

e Consider the content of PC. If the PC refer to code with maps associated to it:

— If no subchain was found, it means that either PC or (PC,%07) are the topmost ad-
dresses that we are interested in. In both cases, it is safe to proceed with the service
routine immediately.

— Ifasubchain was found, including %i7, there are two subcases, depending on whether
%07 is currently used or not. Since the PC refers to code generated by the customised
compiler, it is possible to look up the tables and to find out whether %07 is really
used.

x If %07 is not used: it is safe to proceed with the service routine immediately

x If %07 is used: is it in foreign code?

9 Implementation 149

- If the address in %07 is in foreign code: it is necessary to wait for that
code to complete. The return address contained in %i7 is patched (saving

the previous value) and execution is deferred.
- If the address in %07 is not in foreign code: it is possible to proceed

immediately.

e The PC refers to foreign code. How was the subchain previously found?

— No subchain was found. The only possible address that could refer to a routine in the
customised code is in %07, but the register could be not in use so it is not enough to
rely on the value it contains. However, if %07 really refers to “safe” code, it has to
refer to the main routine in the user program. In that case %i7, the previous address
in the dynamic chain, must forcibly point to the (only) calling site in the runtime
module itself that calls that routine. Conversely, if %i7 has any other value then
%07 cannot refer to that main routine. Checking %i7 against that address, therefore,
allows us to tell whether %07 refers to the main or not.

x If %07 refers to the main in the user program: patch %07 (saving the previous
value) and execution is deferred.

x If %07 does not refer to the main in the user program, then there is no “safe”
code currently in execution, and the request for the service routine should be
dropped.

— A subchain, including %i7, was found. The current value of PC, however, refers to
foreign code so execution must be deferred. Register %07 could be in use or not.
The value can be checked using the master table.

x If the value of %07 is not in the range of addresses of the code generated by
the customised compiler, then %07 is either unused or it refers to foreign code.
In either case, %i7 can be patched (after saving its value) and execution of the
service routine is deferred.

x If %07 appears to be a valid pointer in code for which discovery would be
possible, it is not possible to tell for certain, in this particular case, whether
%07 is used or not, and therefore whether %i7 or %07 should be patched. In
this case, it is never completely safe to patch %07 (it could be used as a regular
scratch register in a leaf routine), and %i7 should be patched instead, even if
that means having to wait for a further routine to complete, in the worst case.
A further heuristic is actually used in the implementation, relying on details
like the opcodes of call instructions and similar details, to guess whether %07
is actually in use or not.

Due to the peculiar characteristics of the SPARC architecture, occasionally it may happen that
altering %07 or %i7 is not enough to cause the return instruction to jump to the deferred handler.
For instance, consider the following code fragment, which might be found at the end of a compiled
routine:

9 Implementation 150

jmpl [%07 + 8], %g0 ; retl
st %02, [%04 + 4] ; some instruction in the delay slot

The return instruction is actually a jump instruction, with which the address contained in %07 is
reloaded into the PC. Because of the delay slots, however, PC is not changed immediately. Instead,
the value in %07 is loaded into the additional register nPC, and the microprocessor executes the
instruction in the delay slot. After that, nPC is loaded into the program counter, and the control
flow continues with the caller. If an interrupt occurs exactly before the execution of the instruction

in the delay slot, modifying %07 is not sufficient, because the target address has already been
transferred in nPC. As a consequence, whenever %07 or %i7 are patched, it is also necessary to
check whether nPC is equal to the old value of the register which is being patched, plus the fixed
offset. If that is the case, nPC must be changed as well.

After all the work above is done, either the service routine is executed immediately or one return
address has been patched. In the latter case, the runtime module simply returns from the interrupt
and waits for the control flow to be intercepted again. When that happens, the patched address,
corresponding to a deferred handler, is followed and the handler assumes control. That handler
appears, in a way, to be called “during” a return instruction, therefore great care must be taken
in order not to corrupt any value contained in the registers. In the initial part of the handler, the
registers declared as volatile across calls, excluding %00 which may contain a return value, are
available, and are used while creating a new context, in which the remaining registers are saved.
The pointer discovery can then proceed normally. At the end of the service routine the registers
are reloaded as they were before control was intercepted, and the normal control flow is resumed.

9.7.2 Pointer discovery implementation

The implementation of the pointer discovery is also rather complex, involving an analysis of the
different cases in which the user program might be stopped. Essentially, the process of pointer
discovery is subdivided into four distinct phases. The first phase is determining the pointers in the
registers whose modes are determined by the current routine. During a second phase, the register
save areas in the stack are scanned. At each step, the modes of the registers contained in the
reserved area of each frame are detected. During the third phase, the automatic variables in the
various stack frames are analysed, and the pointers they contain are discovered. In the final phase,
the heap is explored, and pointers found. The various phases will now be briefly examined.

9.7.2.1 Reqisters

In order to determine which registers have their modes defined by the local routine, it is necessary
to determine whether execution was stopped in a leaf routine or not, and exactly in which part of
the compiled routine. For non-leaf routines, these are the possible cases:

1. Prologue instructions befosave

2. ThesavE instruction

9 Implementation 151

3. Prologue instructions aftenve

4. Body instructions

5. Epilogue instructions befoeESTORE
6. TheRESTORE instruction

7. Epilogue instructions afteESTORE
Without going into excessive detail, these are the conclusions for the different cases:

Case 4: The modes of all registers are available locally. To be precise, registers %I0..%l7,
%00..%05,%07, %g1..%g4 and %i0..%i5 can contain pointers, and their mode can
be checked in the maps for the current routine.

Cases 1&2:The modes of all registers depend on the caller. In principle the maps corresponding
to the return address should be used to determine the modes of all registers. However,
those maps are not useful to determine the modes of the registers used as incoming
arguments. The modes corresponding to the first instruction of this routine can be
used for that purpose. Therefore:

e %I0..%I7,%i0..%i5 can be determined from the maps related to the re-
turn address

e 2%00..9%005 can be determined from the mask bits for %i0..%i5 for the
first instruction of the body

Case 3: The modes of all registers is available locally. In particular, the modes will not be
changed until the microprocessor reaches case 4. Therefore the modes for the same
registers listed for case 4 can be obtained from the maps relative to the first instruction
in the body.

Cases 5&6:All registers are defined locally, but the only register that can be used at this point is
%i0, used as a return value. Its mode can be obtained from the tables for the current
routine.

Case 7: All registers depend on the caller, similarly to cases 1 and 2. Therefore:

e %I0..%I7,%i0..%i5 can be determined from the maps related to the re-
turn address

e %00 can be determined using the same information used for %i0 in cases
5and 6.

9 Implementation 152

In cases 1, 2, and 7, in which it is necessary to inspect the maps corresponding to the program
counter in the caller, the return address can be obtained from %07+8 (the same register becomes
%i7 in cases 3, 4, 5, and 6). The reason for the “+8” is that %07 contains the address of the call
instruction, but the return address actually corresponds to the instruction following the instruction

in the delay slot, therefore two instructions beyond the call, each four bytes wide. In cases 1, 2,
and 7, the address of the most recent stack frame (which is the one used by the caller) is contained
in %06, while betweersAvE andRESTORE the address of the frame of the caller is contained in
%i6.

In the case of leaf routines, %I0..%I17,%i0..%i5 are always determined by the caller, and are
never touched throughout the present routine The return address is always contained in %07, for
leaf routines. There are just three possible cases:

1. Prologue instructions
2. Body instructions

3. Epilogue instructions

Case 1: The modes of %00..%05, which are used as incoming arguments, can be obtained
from the maps corresponding to the first instruction of the body.

Case 2: Registers %00..%05, %07 and %g1..%g4 are defined locally, and their mode can be
obtained from the maps for the current routine.

Case 3: The mode of %00, used as return value, can be obtained from the local tables.

9.7.2.2 Register save areas

After the registers have been examined, the pointer discovery routine explores the register save
areas of the routine whose completion is pending. The analysis is performed by scanning down
the stack, one frame at a time. For each frame, an analysis similar to the one above is made, and
the maps for the corresponding routine are used to determine the modes of the registers saved
on the stack. In principle, the return address should refer to a location within the routine body,
but it might also refer to the first instruction immediately following the body. The return address

is, of course, not the instruction directly following the call instruction but the one following the
instruction in the delay slot. Knowing that each register save area stores registers %I0..%I|7 and
%i0..%i7, the following applies:

Case 1. Ifthe return address is contained within the body, then the local maps can be used to
establish the modes of the saved copies of %I0..%I7, %i0..%i5.

Case 2: If the return address is after the body, then only %i0 is alive, containing the return
value from the called routine.

After scanning each frame, the content of %i6, as saved in the stack, can be used to find the
following frame, until the scan is fully scanned.

9 Implementation 153

9.7.2.3 Automatic variables and stack-based arguments

Obtaining the modes of the automatic variables present on the stack, in each frame, can be done by
traversing the stack and exploring the maps at each step. While this phase can be easily combined
with the previous one, in the current implementation the two are kept distinct for clarity. Together
with the stack-based automatic variables, this phase determines the modes of the stack-based
incoming arguments, if any. In the SPARC v8 ABI, only the first six arguments can be passed in
reserved registers, while the rest are stored on the stack.

Each automatic variable, or argument, is identified using the offset of the memory location
from a base register, which can be the stack pointer or the frame pointer depending on whether
SAVE/RESTORE are used or not. In leaf routines, where no window shift is applied and therefore
the frame pointer cannot be used, the stack pointer is used instead. The offset of the variable,
however, is relative to the address contained in the base register within the routineboidyg
the prologue or the epilogue, the base register could still have the same value used by the caller.
The first step, therefore, is to determine, using the value of the program counter saved in the
context, whether the base register for that routine has been changed or not. There are two possible
cases.

If SAVE/RESTORE are used, then the frame pointer is used as a base register between the two
instructions. If the user program is interrupted before shet in the prologue, or after the
RESTORE in the epilogue, the frame pointer has not been moved yet to reserve the necessary space
on the stack. In that case, the offsets will have to be adjusted accordingly, so that the true locations
can be determined. In detail, during the prologue there are no automatic variables in use on the
stack. In that case, the stack-based arguments will be the only elements to consider. During the
epilogue, conversely, there are no automatic variables in use, and the arguments are no longer
alive, therefore it is not necessary to look for pointers.

If SAVE/RESTORE are not used, the leaf routine might still create some space on the stack by
adjusting the stack pointer manually. The standard routines that generate prologue and epilogue,
in the back end, have been patched so that an indication of such adjustment is passed on to the
final discovery tables. It is still possible to check the program counter, therefore, against those
values and find out whether the stack pointer was moved to reserve space on the stack or not. In
this case as well, if the user program is stopped in the prologue there might be pointers in the
frame slots used for the arguments, while no stack slots are used during the epilogue.

After the first frame has been inspected, the previous values of the stack pointer and the re-
turn addresses are successively extracted from the register save area, and the same procedure is
repeated for the following frames, until the stack is completely scanned. Similarly to what hap-
pened in Sectio®.7.2.1 the return addresses might point just after the last instruction in the
body, and in that case the frame content is ignored, since there are no frame locations reserved for
automatic variables or arguments that can be in use at that moment.

51f alloca() or similar features are not used (see Secti®s5and6.8), there is a fixed distance between the
frame pointer and the stack pointer, in the body of non-leaf routines. All offsets, for simplicity, are actually adjusted
by the prototype to use the stack pointer as reference register, even when the frame pointer is used instead in the actual
code.

9 Implementation 154

9.7.2.4 Heap

Once the registers and the stack have been analysed during the previous phases, the heap is
scanned using the descriptors specified during the allocation of each heap block. The automatic
generation of layout descriptors, as described in Segtibri, has not been implemented in the
current prototype. The descriptors are therefore created manually, using the ABI specifications as
a guide to the layout structure.

While, in principle, the heap scanning could be decoupled from the service routine itself, in this
implementation it is the service routine that decides which heap blocks need to be scanned, and
does so by calling the runtime module. The reason is that not all of the blocks present in the heap
might need to be scanned. If a reachability-based analysis is performed, for instance, the pointers
present in registers and stack act as reachability roots. Only the heap blocks that are transitively
reachable from those roots will need to have their pointers scanned, and possibly adjusted, while
there is no need even to check the structure of the unreachable blocks.

9.7.3 Service routine

The service routine can preemptively inspect and manipulate the custom heap using the informa-
tion supplied by the runtime module. The main purpose of this prototype was to expose the less
obvious problems that might arise when implementing a support for preemptive system services.
The objective, therefore, was to build a system able to obtain all of the information required to run
preemptively a service routine, and in particular able to discover all the pointers in the heap, in the
stack, and in the microprocessor registers. The specific service routine to use was not particularly
important, being a test rather than an essential component of the system.

In this implementation, the test routine which was used simulates operations similar to those
which might be done by a compacting garbage collector. Each time it is called, the test service
routine relocates all the heap blocks, compacting them alternately towards the beginning and the
end of the heap memory area. After moving all the blocks, the area of memory previously in use
is filled with zeroes, so that any attempt to dereference a pointer which was not correctly updated
will most likely result in a program crash, or at least in erratic behaviour. In the tests conducted
so far, all the pointers in use appeared to be discovered and updated as expected.

9.8 Arrays and GCC

In certain cases, in particular when dealing with arrays, GCC may fail to maintain internally
a strict separation between scalars and pointers. The problem stems from the structure of the
predefined RTL patterns which must be defined in the back end to describe basic operations
like sum, difference, and so on. All those standard patterns are required by GCC to operate on
arguments of the same mode. For example, there is a definition of the sum of 16-bit integers,
obtaining a 16-bit integer as a result, a different definition for the sum of 8-bit integers, and so on.
The same mechanism, however, also applies for partial integers. From the point of view of
GCC, partial integers are just a numeric representation of legal values for pointers, handled as

9 Implementation 155

integer with some restrictions on the number of usable bits. The way in which partial integers
are used, on the other hand, is as a completely separate representation of pointers, as explained in
Section9.3.1 A sum of partial integers therefore assumes the connotation of a sum of pointers,
which has no practical use, nor much meaning.

The primitive operations on partial integers are not normally used directly by GCC, since there
is no practical reason why a compiler would want to sum or multiply two pointers. Conversely,
we would possibly be interested in a sum of a pointer and a scalar value, or a difference between
pointers obtaining a scalar, in the style of C. In most cases, the way in which the code is expanded
can be controlled by adapting as needed the various rewriting rules in the back end. In one case,
however, the expansion is performed autonomously by the GCC core, and it is not possible to
alter this behaviour without patching some additional code in the GCC core.

In detail, GCC might attempt to perform arithmetic on partial integers while generating the
code corresponding to array accesses. In that case, a base register (pointer) and an index (scalar)
must be combined to obtain the address of an individual array element. GCC expands the resulting
expression by converting the offset from integer to partial integer, and then attempting to perform a
homogeneous sum between partial integers. From a purely numerical point of view, that operation
works perfectly well. However, performing such a conversion between a scalar and a pointer is
illegal for us, since we want to enforce a strict separation between pointers and scalars. The
resulting RTL expressions, and the corresponding generated code, would handle the offset as a
partial integer, which means that a scalar value (the offset) could be mistakenly identified by the
runtime module as a potential pointer, and possibly updated as a result of memory movement.

There are at least two possible solutions to this conundrum. The first, fairly easy to implement,
involves a modification of the postprocessor, and of the custom liveness analysis, in order to track
backwards the origin of pointers. If a pointer is discovered to be the result of a sum, the two
addends (which look like pointers) can be treated as potential scalars. Tracking recursively the
origin of each of the subexpressions, there should be no problem in eventually reaching the leaves
of the expression, which are either pointers or scalars. At this point it is trivial to proceed in the
opposite direction, resolving the uncertainties and determining exactly which values are indeed
true pointers and which are not. This additional analysis can be seen as a sort of workaround on
the particular way of generating array access expressions by GCC.

A possible alternative, cleaner but more complex, would be to alter the portions of GCC that
expand the array access expression, forcing it to use patterns which sum integers with partial
integers, if available. In that way the annotations generated while the assembly code is created
would be more accurate, and there would be no need to modify the postprocessor. The downside
of this method is that the GCC core itself has to be modified, which introduces a number of
problems involving compatibility with the original back ends, portability on newer versions of the
compiler, and general maintenance issues due to the possible internal dependencies on the code
that is being modified. Conversely, altering the postprocessor allows all of the modifications to be
confined to the back end, whose interface with the GCC core is much better defined and relatively
stable. The full implementation of either of the two alternatives, in the context of a more complete
support for derived pointers as described in this chapter, was left as a future development. The
implementation of the modified postprocessor, in particular, seems to be quite straightforward.

9 Implementation 156

A further case in which a scalar may be converted implicitly to a pointer is the use of null point-
ers. If a pointer variable is assigned “null”, the corresponding low-level operation is equivalent
to moving a constant (zero) into the pointer variable, which implies such a conversion. In prac-
tice, however, the assignment is easily handled by the back end with a specialised rewriting rule
that recognises the special case, and does not perform any mode conversion. The assignment is
eventually transformed to a “clear pointer” operation, which poses no problems.

9.9 Limitations/Future developments

This test implementation was essentially a test case, designed as a challenge to show the difficul-
ties in developing such a system. For that reason, a choice was made of the set of features to be
supported, so that a working system, properly interfaced with GCC, could be obtained within the
time allotted. Nonetheless, the current implementation can certainly be expanded and improved
in a number of areas, offering a more realistic support to real-life programming environments.
None of the features that were left out during this first stage of development present extraordi-
nary implementation difficulties, and they have all been discussed in the previous chapters. With
respect to the C language, it should be pointed out that some features of the language cannot be
easily supported by such a system, due to the possible loss of pointer information. In particular:

e Casting a pointer to a scalar value (int or long) can cause the compiler to lose track of the
pointer as such. That could cause a reachability analysis not to identify all active pointers
and memory blocks.

e The standard C memory allocation routinesal(loc () and related operations) does not
require the programmer to identify the structure of the allocated blocks. The resulting
insufficient information, available to the heap handler, would not be sufficient to identify
the active pointers present in the heap. For that reason, the standard allocation routines
must be replaced with custom calls.

Other features of C and other languages could, in principle, be supported according to what is
discussed in this thesis. The main features not current supported by the present prototype, and left
for future development are the following:

e Packed records (like ANSI C bitfields) can cause pointers to be aligned to arbitrary bit
offsets, requiring bit-level precision in the various tables. Currently pointers are required to
be aligned to a 4-byte boundary.

e Multithreading, which requires the runtime system to be specially designed in order to
support multiple contexts and stacks.

e The additional support necessary for the treatment of exceptions is missing.

e Derived pointers can only be handled using special techniques. They are discussed exten-
sively in the next chapter. Currently only pointers to the base of heap blocks are supported.
That involves the following limitations:

9 Implementation 157

— Large records, which cause the microprocessor to perform intermediate address cal-
culations, are not supported

— References to inner fields of records cannot be extracted

— Support for arrays is currently incomplete

e Jump tables (used, for instance, in “switch” statements) imply multiple possible target des-
tinations for jumps. Simple branches are supported in the current implementation, but not
jumps with multiple destinations.

e Arbitrary unions would require a reorganisation of the fields in the records, which is not
performed.

e Global are currently not inspected. The related implementation is likely to be straight-
forward, since the structure of the global area is normally fixed for the entire life of the
program.

9.10 Testing

The prototype was tested both verifying statically the consistency of the generated tables and
data structures with the compiled assembly code, and running dedicated test programs in order to
verify the ability of the system to manipulate memory preemptively.

9.10.1 Static testing

A core part of the prototype is the automatic generation of PC maps, relying on the information
available to GCC, on the customised back end, and on the mode analysis. In order to veryfy
the ability of the prototype to generate PC maps, a number of test programs were created and
processed with the system. The limitations in the supported features, as detailed in the previous
section, did not allow us to experiment with standard benchmarks or pre-existing programs. Con-
sequently, the test programs were especially designed and tailored to test the system behaviour.
In particular, test programs were used to test unusual situations, like routines with an unusually
large number of parameters, or (using automatically generated test code) particularly long rou-
tines, or code containing expressions so pathologically complex that the set of available registers,
even on the SPARC, is not sufficient to store all of the intermediate results, forcing the spilling
of some temporary values on the stack. Test programs written in multiple languages were also
used, and the system was able to successfully generate PC maps from code written in C, C++,
Ada, Pascal, and Java. The resulting tables were painstakingly manually inspected in order to
check their consistency with the corresponding compiled code. The compiled code itself was also
checked against the code generated by the unmodified compiler, in order to pinpoint discrepancies
and irregularities. A number of built-in consistency checks (as detailed in Séc8pwere also
used to verify the internal consistency of the tables.

9 Implementation 158

The tables encode, with a short header, certain caracteristics of the routine as, for instance,
the offsets of the beginning and the end of the body, the usewf/RESTORE in prologue and
epilogue, and so on. The PC map, possibly compressed, follows the header. Since the exact life
of scalar values is not essential to relocate memory, only pointer information is preserved in the
final PC maps. Consequently, their size can vary considerably, in accordance with the greater
or lower use of pointers in the test programs. In one especially crafted example, which used
almost exclusively pointers, the maximum size of the compressed table reached at most one third
of the code size, but the results for every other test, using more balanced code, was well below
25% of the code size. Some examples, with the related statistics, are available in Appeghdix
The compression routines themselves (following the technique described in S2é&tidrwere
exhaustively checked using automatically generated test patterns, compressed and decompressed
to verify the correctness of the implementation.

9.10.2 Dynamic testing and debugging

Due to the limitations of the current prototype, it was possible to perform only a limited testing

of running programs. The main aim of the testing performed was to verify the full functionality

of the current prototype, checking the consistency of the internal structures and verifying that
running code, using the custom memory manager, can indeed be suspended preemptively and
resumed flawlessly after the heap content has been modified on-the-fly.

The dynamic behaviour of the system depends on the runtime module, which, upon receiving an
interrupt, takes care of scanning the PC maps, reconstructs the pointer information, passes control
to the service routine, and finally returns control to the user program after performing the neces-
sary adjustments. Especially tricky, as explained in Se&i@rwas testing the reconstruction of
the stack layout and the actions used to support deferred interrupts. Initially, explicit synchronous
calls were inserted in the compiled calls to verify the ability to parse the stack, and find the point-
ers in stack and registers relying on a stable and known frame configuration. Subsequently, the
interrupt handler was connected to a console signal, and signals were manually sent to the running
program. All the possible cases of contents of PC, %i7 and %07, as described in Settipn
were checked exahustively. A great help during this stage was offered by the Simics simulator
suite, developed by Virtutech, which allowed the code execution to be inspected step-by-step, re-
gardless of the system state. Execution was therefore traced through interrupt handlers and stack
frames reorganisation. The interface available between Simics and the GDB debugger was also
invaluable. Notably, part of the debugging was actually performed simulating a complete SPARC
Solaris system on a conventional PC running Linux on x86 (albeit at a fraction of the speed).

In order to test some running code, an example which generates and deallocates multiple binary
trees in C was created, and its execution repeatedly interrupted sending signals asynchronously,
both manually and from a concurrent deamon program. Upon reception of the signal, the simple
service routine implemented in the system moved all of the allocated memory blocks alternatively
towards the top and the bottom of the heap memory, setting to zero the previously occupied
areas. No actual collection was performed, since the main point of the test was verifying the
ability to find all of the pointers, rather than perform the actual memory manipulation (dependent

9 Implementation 159

on the specific service routine). Finally, the test code was expanded and rewritten in different
languages, so that a single executable containing C, Pascal and Ada code was generated and
run successfully with preemptive memory manipulation. Each of the portions in the different
languages created and deleted binary trees, and a main code in C called each of the portions. Tests
in which the data structures were created using one language and deleted using a different one
were also successfully completed. A test involving Java at runtime was not readily feasible, due
to the need to coordinate the Java system libraries with the customised heap handler. Nonetheless,
PC maps for code fragments written in the Java language were successfully generated, within the
limits detailed in Sectio®.9.

9.11 Results

The various techniques and algorithms described in the previous sections were the basis for the
creation of the test implementation. The SPARC back end of the GNU Compiler Collection
(GCC) was modified in order to create the local annotations, and the necessary postprocessors and
runtime components were developed. In particular, confining the modifications to the compiler
back end allowed development to progress throughout multiple versions of GCC, from the initial
version 2.95.2 to the most recent version 3.3.3 (released 14 February 2004), with relatively little
effort.

The existing GCC front ends did not require customisation, allowing the prototype to support
multiple high-level source languages, albeit with the limitations listed in the previous section.
This is the first time in the literature that a system that uses this kind of maps can be used with
multiple high-level languages. Test programs written in C, Pascal and Ada were successfully
compiled, using the highest level of optimisation. The maps necessary to discover the pointers
were successfully generated automatically, and the final executable ran normally. It was possible
to send at arbitrary moments a signal to the running program, causing the intervention of the
service routine. After the heap manipulation, the running program resumed operation, totally
unaware of the alterations made to the pointers contained in its registers and memory.

It would have been interesting to compare the performance, and measure the possible advan-
tages in terms of latency, of such a system with a similar system that, while using preemptive
thread switching, relies on more conventional safe points. In the case of this prototype, however,
there was no reasonable way to proceed with a realistic comparison, both because of the limita-
tions of the current implementation and because the main focus of this work was investigating the
implementation difficulties of such a system, rather than creating a production tool. Nonetheless,
it is still possible to compare the code generated by the customised compiler with the code gen-
erated by the original GCC, to check whether the various modifications applied to the back end
had a substantial effect on the efficiency of the generated code. In most cases, the results of the
comparison show that the code generated by the customised compiler is absolutely identical to
the code generated by the original compiler, or differs in trivial ways. For instance, the example
shown in Sectior®.5.1, on pagel39 compiles to absolutely the same code in both cases, while
every instruction in the generated optimised code is a safe point.

9 Implementation 160

That shows that it may be possible to retrofit an existing compiler, in order to produce pointer
discovery maps, even if the intermediate representation is not tied to a specific target architecture
and even if the final code generation stage takes place without following formal transformations
(and in GCC the code generation stage is most definitely not done according to formal models).
That is in stark contrast to the approach followed by Stichnoth et &LCP9, in which the
intermediate representation was designed to support a specific target architecture, to the point that
each instruction in the intermediate representation matches exactly one instruction in the final
code. A more flexible approach, instead, can be of help while adapting existing compilation
infrastructures. An example of side-by-side comparison of the code generated is available in
AppendixC.

The size overhead of the maps for each routine body has been found to be typically less than
25% of the code size. Such result is consistent with the observations of Di4iH92], Tarditi
[Tar0Q, and Stichnoth $LC99. The deferred execution of service routines was tested exten-
sively and worked as expected. The feature was used to interface the code generated using the
customised compiler with existing libraries. A concrete example of the liveness information cal-
culated by the system, showing the tables generated for C and Ada code, is available in Figure
9.11.1 More examples are available in Appendix

161

Implementation

9

"UONONJISUI 1BY] JO UOIINJaXa 8y aio}aq Jayuiod e sureluod Jaisibal Buipuodsaiiod ayj Ji sa|qel ay) uluasald si X, uy
‘sa|dwrexa apod Bpy pue J 1o} sa|gel paresauab ayl Jo ued : T'TT'6 a4nbi4

9poo epy pasiwndo (q) 8poo 9 pasiwndo (e)
XX 0600 1B% ‘[8+00%] Pt -ppE pus “X'X" ¥800 7o% ‘0 Ao {
XX"* 2700 €GTIT eleuq ‘dooj pus “X*X* 0800 pIT q {
XX'* 8%¥00 006% ‘3IX0 ‘Goy oopue i pus *X'X" 2L00 [sos] ‘0o% 1s {
18ETT" I pue *TUXX 8L00 gos ‘1b3 o {
XX %00 [0og] ‘To% as ‘os[ej=1yoiom “X*XX %L00 PIT” e ‘auq {
XX'* 0%00 T6TT" q [e-1ebuey 0 ‘16% duo LT ‘0=yepHom
X*X* 2€00 003 ‘1by Aou os|e 171 e’‘q ‘u=J<-1obIe}
XXX® 8£00 geT1" e‘euq ‘r|[eebiel=:1061e) *X'X' 8900 T0% ‘[8+50%] PT }espe
XXX* pE00 0 ‘1bs duo uay} |Inu =/ x°|je-jebe) TX°X' %900 LTTT" ®e‘suq ‘1<-jobiei=1061e)
CTPTTC as|g *X*X* 0900 0 ‘703 dwo ipTTC (1<-10618)) §1
XX** 0£00 Gog ‘0 aou i pus *T XX 9500 gos ‘1by nou }ose {
XX** 9200 8cTT" q ‘os[ej=1o oM *X'X' 8500 [p+50%] ‘00% 3s {
STGTT ‘u=r|[e1ebey *X°XX $S00 117" eloq ‘0=HoHom
XX** 8200 [p+00%] ‘103 as as|e “X'XX 0500 0 ‘1B3 dwo ‘u=|<-Jobue}
X*X* 5200 003 ‘1bg aou =__ e-jobirel=:106.e) *X*X' 2700 T16% ‘[p+G0%] PT }espe
XXX® 0200 geTI1T e‘oUq usy} |Inu =/ 1'|[e-Jebue} 41 *X'X" 8700 6% ‘[50%] PT ‘|<-1oburej=lobie}
XXX* 2700 0 ‘163 duo uay} x < ejep|fe-jobie) yi “X*X' 7700 LTT e‘neTq (I<-1061e1) 4
XX'' 8100 16% ‘[7+00%] PT doo| yoHom ajum *X*X" 0700 TTS ‘10% dwo :LTTT° =__ } (x < eyep<-jabuey) y
XX** 7100 6% ‘[00%] PT *X'X® 9£00 10% ‘[8+50%] PT G:ETTT" } (oHom) ajium
XX** 0100 91T elaTq ‘eou=:1o01e} X*"X" 8€00 [0Ts] ‘00% 3s
XX** 2000 pos ‘163 dud ‘ejep’|[e-u=:x XX ¥E€00 171" q JL=}HooM gguin
1EGTT” ann=yepom XX*X* 0€£00 yos ‘T Aou ‘oa1),=10b.e), Bpou
XX°* 8000 1P% ‘[8+00%] PT uibaq XX'X* 2200 €TTT" suq }ospe {
XX 7000 gos ‘T nou XXXX" 8200 0 ‘10% duwo ‘u=sa1),
XX** 0000 ©pos ‘[8+T0%] PT upx X*XX' %200 gog ‘10% aou } (@841,
L 16 :ppe ‘ues|oog :yeTHIOM X'XX® 0200 [8+00%] ‘TTs s
_/ gog 06% ‘ndapou :196.e) X*'X" 2100 103 ‘[0Ts] PT TINN=I<-u
10% X*°X' 8100 [p+00%] ‘0bs as TINN=I<-U
SI C~&®UO: c_ucm\:n_GUOc c_umm:vU_umm_:UmoO_Q XX ¥I00 [00g] ‘0bs 3s X=ejep<-u
_v — 154 () (apou)ao|yoel=u, mqu
oy %\ (x ZgIIn‘ea11,, BPOU)PPE PIOA

Don’t Panic.
— Douglas Adams , The Hitchhiker's Guide to the Galaxy

Chapter 10

Derived Pointers

10.1 Pointers and heap blocks

An important aspect of the ability to manipulate the heap preemptively is the ability to move
heap blocks on-the-fly, while adjusting the value of all the pointers that refer to that memory
block. That allows the system to implement features like compaction, or relocation while migrat-
ing memory (as opposed to isomigratiohkBNP01]) while preserving the integrity of the data
structures present in the system. As we shall see in this chapter, however, reconstructing the
connection between the heap blocks and the pointers to them is not always straightforward.

The basic idea is that, if a heap block is relocated in the addressing space, the corresponding
pointers need to be adjusted by the distance through which the heap block was moved. So far
we have implicitly assumed that the association between pointers and heap blocks can be easily
reconstructed. For instance, in the case of “base” pointers, which point to the base location of
a heap block, the connection is obvious. In certain cases, however, the pointer might not refer
directly to the beginning of the block, but rather to a different location. In certain cases the
pointer might be pointing somewhere within the heap block, for instance a pointer to a field
within a structure contained in the heap block. Such a pointer will be called “internal”. If we
know that a pointer is actually an internal pointer it is still possible to determine, although that
might be computationally expensive, which is the block that corresponds to that pointer.

In other cases, however, the pointer might point externally to the heap block. Consider for
instance the case in which an array is repeatedly accessed. It is a common optimisation technique,
in that case, to pre-calculate the address of the “virtual origin” of the array, that is the address that
an element would have if all its indexes in the array were zero. However, in the case in which the
lower bound of one of the indexes is greater than zero, the virtual origin address might be lower
than the address of the first real element of the array in question (and similarly for the higher
bound). If the array is contained in a heap block, the virtual origin might refer to a location which
is completely outside the block boundaries. If the pre-calculated address is stored in a register,

162

10 Derived Pointers 163

pointer discovery would still need, somehow, to reconstruct the connection between the pointer
and the heap block, whether it is a base pointer, an internal pointer, or an external pointer.

More generally, some values might be the result of a computation that involves the address of
one or more heap blocks. We will call those values “derived values”, to highlight the connection
between heap block addresses and the calculated value. In particular, we will be interested in
derived pointer. If some heap blocks are relocated, the derived values will have to be updated
accordingly. In extreme cases, for instance in the C language, the computation that leads to
those derived values (pointers or otherwise) can be completely arbitrary due to the ability to
perform pointer arithmetic. Excluding those cases, however, the compiler itself will create derived
values when performing particular optimisations, or while generating the code for well-known
operations. The most common cases will now be summarised.

10.2 Common sources of derived values

The most frequent sources of derived values can be summarised as f@ibi#OpR, BC9Z:
e Virtual origin for arrays, as previously discussed

e Common subexpressions, for instange, 2] :=a; A[i,3]:=b; might get converted into:

p=&[R,2];
*p=a;
*(p+1)=b;

e Strength reduction in loops, so thiatr (1=0;i<10;A[i++]=a); is compiled into:

p=&A[0];
for (i=0;1<10; *pt++=a);

e Double indexing (rarely used). If two arrays are scanned in parallel, the offset could be
calculated just once. For instance:

for (1=0;1<10;i++) {
Ali]=a;

B[i]=b;

}

could be transformed into:

offs=(&B[0]1-&A[0]);
for (i=0;1<10;p++) {
*p=a;
* (ptoffs)=b;
}

10 Derived Pointers 164

e Parameter passing by variable, for instance passing a field in a structure as a parameter
would create a reference to that field, or similar mechanisms by which a reference to a
field or array element might be created implicitly by the compiler {thed statement, for
example).

The cases described are the most frequent, and probably the most important to support in a real
programming environment. In addition, split pointers, described in setié2, can also be
seen as a kind of derived values. With the exception of the double indexing, and of expressions
explicitly calculated by the user by means of pointer arithmetic, the remaining derived values are
actually derived pointers which can only depend on the address of at most one memory block, if
the structure or array to which they refer are contained in the heap. We will only discuss derived
pointers, rather than arbitrary derived values. Being able to reconstruct at runtime the association
between the derived pointer and the heap block which logically corresponds to it is the challenge.
Notably, the compiler described by Stichnoth et 8ILC99 does not deal with derived pointers
at all, keeping instead only base pointers in registers, presumably relying on the complex x86
addressing modes to perform array accesses and similar operations. Such an approach may be
more problematic using a RISC machine, which has simpler addressing modes and therefore may
require explicit address calculations to perform analogous operations. Additionally, avoiding the
use of derived pointers prevents the compiler from applying the important optimisations listed
above, reducing the efficiency of the generated code.

10.3 Dealing with derived pointers

10.3.1 Derivation tables

A possible approach to handling derived pointers is the use of “derivation tables”, which describe,
in a form accessible by the runtime module, the way in which the derived pointer was obtained by
combining other values. The idea is that, knowing how a derived pointer resulted from a certain
expression involving the base address of a heap block, it is often possible to perform an inverse
calculation, reconstructing the base pointer from the derived pointer. Furthermore, once the heap
block has been moved, the expression can be used again to recalculate the updated value of the
derived pointer, which still refers to the same block.

The way in which derivation tables can be implemented is discussed by DiwanBMtHI2],
in the context of a Modula-3 compiler based on GCC. The flexibility of derivation tables lies in
their ability to support rather complex derivations, enabling the representation of derived values
obtained in various ways. For instance split pointers, described in S&ctidhcould be seen as
a kind of derived value, and the association between the split pointer and the complete pointer it
refers to can be easily preserved in the derivation tables. On the other hand, the biggest drawback
of derivation tables is the fact that the base values, from which the derived values should be
recomputed if necessary, must be kept alive as long as the derived value can be accessed, even if
those base values are no longer used by the code. That might cause inefficiencies in the compiled
code, since the larger set of live values, at every instruction, could cause some registers not to be

10 Derived Pointers 165

reused as efficiently as in the fully optimised code. Other inefficiencies might arise from the need
to determine statically the full derivation expression, which sometimes cannot be done if multiple
control paths are merged together as a result of an optimisation. Another potential problem could
be the additional memory occupancy for the storage of the tables, although that occupancy is
related to the code size and does not scale up with the size of the data generated by the program,
therefore it is unlikely to be a substantial concern. While derivation tables can be a very effective
solution to handling derived pointers, other techniques may be worthy of some investigation.

10.3.2 A different approach

An alternative to derivation tables may be abandoning the attempt to preserve the exact associ-
ation between the derived pointer and the base pointer of the object, but just preserving enough
information to be able to reconstruct at runtime, indirectly, the association between the derived
pointer and the heap block it refers to. The idea aims to associate a derived pointer, which may
point anywhere, with a location which is certainly within the boundaries of the heap block to
which the derived pointer logically refers. Knowing the internal pointer can then allow the heap
manager to identify the heap block and determine the corresponding base pointer. There appears
to be no previous mention of this technique in the literature. It is therefore presented as an initial
proposal of the author of this thesis as an alternative to derivation tables, while further study may
be useful on some aspects, as detailed at the end of this subsection.

The basic idea, as previously mentioned, is finding a way to determine an internal pointer from
every derived pointer. In particular, we want to associate to each derived pointer, for every ma-
chine instruction, a fixed offset that, added at runtime to the current value of the derived pointer,
gives us the address of a location within the corresponding heap block. That can be achieved by
considering the ways in which, according to the list in Secti0r2, derived pointers can be gener-
ated by a compiler in the most common cases. If the derived pointer refers to a field of a structure,
then the pointer is also an internal pointer, and it poses no problems. Conversely, accessing an
array presents two kinds of derived pointers that can be used: pointers which are pre-calculated
as virtual origins or as common subexpressions, and pointers which are used to access individual
elements, for instance using autoincrements/decrements.

In the case of a pointer used to access an array element, unless the program behaves erratically,
it can be reasonably expected that the pointer will actually be used, at runtime, to perform a read
or write of a real element of the array or as a border condition, if the pointer is also used as an
index, the pointer value might correspond to the first location after the end of the array. If the
pointer is used to access a real element, then the pointer is actually an internal pointer. If it points
after the end of the array, it can be still considered an internal pointer if we are able to differentiate
between the memory block we are interested in and the following one in memory. For instance,
if there is a header, containing at least one machine word, before heap blocks, a reference to the
first address after the end of the block could be easily associated to the block that precedes rather
than the block that follows.

The most complex cases are the calculation of a virtual origins, and the partial calculation of
the address of a specific array element. In those cases, the address which is calculated could be

10 Derived Pointers 166

an external pointer, and there could be no fixed offset, that can be statically calculated, between
the computed address and the beginning of the array. However, assuming that the element which
will be eventually accessed exists, it should still be possible to determine a pointer which points
somewhere within the array, although it cannot be determined statically where. The following
discussion will clarify the proposed mechanism.

10.3.2.1 Array representation

In a language like Ada, for instance, we might havenatimensional array declared asl;..us,
l5..Uz,...,lh..Un], Wherel; anduy; are the lower and upper bounds of each dimension. We can
assume, without loss of generality, that the array is stored in row-major order (as in Pascal, as
opposed to the column-major order used by Fortran), that is an elemenks,, ..., x,+ 1] is

stored in memory immedately after an elemafity, xo, ..., X1, an element [Xg,Xo, ..., Xn—1 +

1,1,,] is stored right after an elememtxy, X, ..., X,—1,Un], @an elemenk [Xy,...,Xn2+1,1h_1,1n]

is stored right after an elementxa,...,Xn_2,U,_1,Un], and so on. Consequently, we can always
treat ann-dimensional array as an-dimensional array, witlm < n, in which each element is a
complete(m— n)-dimensional array.

What we would like to obtain is the ability to associate at any moment each pointer, which is
the result of a virtual origin calculation, with the array to which it refers, so that the pointer can
be properly adjusted whenever the corresponding array is moved. For instance, let us assume
that a pointer referring to the virtual elemeri0,0, ..., 0] is calculated. If the bounds are known
statically, or at least at the time when a memory manipulation is requested, we can easily establish
that the physical representation of the array is separated from the mentioned virtual origin by the
following number of bytes:

In+In-1(Un—1In) + -2 (Un-1—In—1) (Un—1In) +... Fl1 (U —12) -+ (Un—1 — In—1) (Un—In)

or, written in a simpler form:
n

C Ii _I
i; jli_-li-l(uj i)

It is sufficient to add that number to the virtual origin to find the address of the physical array
to which it refers, and therefore the corresponding memory block that contains the array. If
some memory blocks are then moved, it is straightforward to adjust the virtual origin pointer, if
necessary, to match the new location of the virtual elemedto, ...,0].

10.3.2.2 More general virtual origins

The case of a pointer referring £0[0,0,...,0] is actually quite specific, and other kinds of
virtual origins can be calculated automatically by the compiler, and stored in temporary point-
ers. A simple case would be the sequence of operations that the compiler uses to calculate the
pointer toA[0,0,...,0]. It might happen that the compiler precalculates the constant, using the
formula above, and then subtracts in a single step the constant from the initial address of the

10 Derived Pointers 167

array, in order to calculate the virtual origin. On the other hand, it might also happen that suc-
cessive calculations are applied, obtaining a series of intermediate pointers. For instance, the
compiler might first subtradt, from the initial address of the array, obtaining the pointer to the
virtual elementi [l4,...,In-1,0]1. Then it might subtract,_1 (u, —I), obtaining the address of
Allq,...,Ih2,0,0], and so on. At every step, a temporary pointer might be stored somewhere,
yet it is still necessary to reconstruct the association between such a pointer and the beginning
of the array. Luckily, since the full calculation is under the full control of the compiler, it is
straightforward to associate the correct displacement to each temporary pointer across the code
that performs the calculation in the final compiled code. No particular problem exists in that case.

In other cases, however, the compiler might try to use optimisations that make it much harder to
reassociate precisely the temporary pointer with the beginning of the array. Consider, for instance,
the following code:

Ali,J,k]:
A[i,m,n]:=f;

e;
Ali,m,x]:=q;

where the various indexes are not known statically. Optimising the intermediate steps of the
addresses calculations, the code could be optimised as:

t=&(A[1,0,0])
(EH(I (U —12) +k)) =e;
p=6& (* (t+m* (Up—12))) ;
* (ptn)=f;
*(ptx) =9;

In this case multiple values, most of which are not known statically, are added to the base pointer.

The only way to reconstruct the exact position of the beginning of the array from one of the

intermediate pointers andp would be to reconstruct the expressions using the values of

m, andk, as would happen using a derivation table. As mentioned in Setfidhl however,

derivation tables can be complicated to represent, with a consequent memory occupation, and

require all the base values of the expression to remain alive as long as any derived value is alive,

which might potentially impact on the reuse of registers, and on the quality of the generated code.
A possible alternative could be, rather than looking exactly for the first location of the array,

trying to find any location that is internal to the array itself. Such information is sufficient to

reconstruct the association between the temporary pointer and the memory block. For instance,

when the address afsA[1,0,0] is precalculated, the value tis not known statically. Nonethe-

less, since a physical access is made to the elerieni.k], we know thati is supposed to be,

at that point in the code, a valid index and therefore within the rdng®e. Regardless of the

exact value ofi, it is therefore known that the pointer referringaoi, l»,13] is a legal internal

pointer within the array.. Additionally, we also know that the addressfi,0,0] is exactly

I3+12(us —I2) bytes away fromx [1,l2,13]. Therefore, if we want to find a pointer which is inter-

nal to the array to which[1,0,0] refers, we just have to add to it the valge- I (uz —12). What

10 Derived Pointers 168

has been done is, in a sense, considering the array as a monodimensional array of bidimensional
arrays, and separating the two calculations.

Let us repeat the same procedure for the pointdihe temporary value in this caserisi,m,0] .
Adding back to it the constamg, because of the previous reasoning, it is once again possible to
obtain a pointer that, although its exact value is not known statically, is certainly going to be within
the boundaries of the array itself. The core of the technique is that, regardless of the calculations
performed during a virtual origin calculation, it is always possible to reconstruct from each of
the temporary pointers an internal pointer. As long as there is at least one word separating arrays
residing in distinct memory blocks, the technique is also suitable for pointers pointing to the first
location immediately following an array, as allowed by the C langdage.

This technique can avoid many of the problems of derivation tables. The amount of information
that it is necessary to store is smaller, and typically the base values, from which the derived
pointer is calculated, are not required to be alive during the whole life of the derived pointer, as it
happens using derivation tables. Finding the heap block given an internal pointer, however, might
be computationally expensive if the heap manager was not designed to support the operation
efficiently, which might on the other hand require some overhead in terms of memory and/or
allocation time. For that reason, the technique that is presented in this subsection presents some
trade-offs in terms of the advantages, described earlier, versus the additional memory or speed
penalty. It is important to point out, however, that finding which block corresponds to a certain
internal pointer only needs to be done during the pointer discovery stage. That aspect could
be exploited to minimise the overhead if the pointer discoveries are not frequent, reducing or
eliminating the allocation speed overhead while increasing the (proportionally less frequent) cost
of pointer discovery. Additionally, in many cases it should be possible to determine statically
whether a given pointer is a base pointer or a derived one. That would allow us to further reduce
the additional work, since base pointers can be dealt with in a simpler way. The various trade-offs
should be carefully evaluated to determine the concrete viability of the solution in a given context.

INotably, if indexes out of range by one position were allowed in languages with native multidimensional arrays, as
in Pascal or Ada, the temporary pointer might reach beyond the location immediately following the array. For instance,
inan array likea[0..1,0..1], the virtual element[2, 1] would refer to a location two positions beyond the end of
the array. That is not a problem in most languages, however: C arrays are monodimensional, while Pascal, Ada, and
other languages do not allow out-of-range index values.

You can't have everything. Where would you put it?
— Steven Wright , 1955 -

Chapter 11

Pointer Discovery as an Enabling
Technology

The use of the techniques discussed in the previous chapters can have a positive impact on certain
aspects of computer systems. Being able to determine the complete set of pointers at an arbitrary
position in the code, for instance, can be used to reduce latency when preemptive thread schedul-
ing is in use. In certain circumstances, the ability of discovering pointers at any instructions may
even be a requirement, a necessary step in order to implement certain memory handling tech-
niques. A concrete example of the importance of pointer discovery in the development of new
memory management techniques will be introduced in this chapter.

The particular topic, which will be described in some detail, was explored by the author during
an internship in Sun Microsystems Laboratories, Mountain View, California. The interaction
between the memory management technique and the main body of research of this Ph.D. will be
discussed in Sectiohl.3

11.1 Thread-local heaps: an introduction

The creation of an efficient parallel garbage collection algorithm presents a number of challenges,
due to the presence of multiple active CPUs that need to be coordinated while performing their
operations on the shared memory heap. For instance, multiple processors, while cooperating in
the garbage collection, could try to create copies of the same heap block without being aware of
one another, or they could be rearranging pointers in an uncoordinated way. The situation can be
even more complex if, at the same time, some of the processors are performing garbage collection
operations while others are concurrently executing normal user code, acting therefore as mutators
on the same data structures which are being analysed by the collector.
In order to coordinate properly the work of the different microprocessors, some form of syn-

chronization is necessary. The overhead involved can be sometimes significant, depending on the

169

11 Pointer Discovery as an Enabling Technology 170

specific details of the garbage collection algorithm and the overall organization of the memory
heap. Many garbage collectors, for instance, are “stop the world” collectors, in which, when a
garbage collection is required, all threads are stopped so that there are no active mutators in the
system. Depending on the implementation, the overhead involved can be greater or smaller. For
instance, an exact garbage collector, if no information is available about pointers in registers at all
the points in the code, might need to roll forward, to the nearest safe point, all the threads in the
system, which might involve a substantial delay.

While the synchronization overhead can be more limited using the most recent replicating
garbage collectorsB01, HMO01], some degree of synchronization is still necessary, even in
those state-of-the-art systems, to prevent multiple processors from interfering with one another
while working on the garbage collection. Since every synchronization involves overhead, it may
be useful to explore techniques used to reduce the number of necessary synchronizations.

11.1.1 Thread-local heaps

An interesting thread of research revolves around the partitioning of the common heap space in
multiple areas using “thread-local heaps3t¢0Q Sal01 Har01 DKL *02, Kin03] In particular,

each thread obtains a private, thread-local area, that contains only memory blocks that are guar-
anteed not to be accessible by other threads. A common, shared heap is also available to store the
blocks that may be used by multiple threads. The potential advantages of such an organizations
are quite interesting. Each thread becomes able to perform a garbage collection of its own local
heap without the need of any synchronization or communication of any kind with other threads.
During such operation there is no need to stop the other threads, which can continue undisturbed
to act as mutators or can collect their own heaps, and each garbage collection does not need to
perform any locking at all on the local heap or on the individual blocks. Furthermore, all mem-
ory allocations that are performed in the local heap do not need to be synchronized, hence the
allocations in that space can be faster. A similar improvement can also be obtained using “local
allocation heaps”, in which a small portion of the heap is devoted to the allocation of blocks for
each thread. However, in this case, no independent garbage collection is possible, since all heap
blocks logically still exist in a single, common he&p.

11.1.2 The shared heap

While thread-local heaps allow the garbage collection to be performed without synchronization

in many cases, the synchronization cannot be avoided for those heap blocks that really need to be
accessed from multiple threads, for instance because they are part of a large shared data structure
or because they are used for communication between different threads. A common, shared heap
is used for this purpose, alongside the thread-local heaps. All the techniques that are normally
used while handling a fully shared heap can still be applied in this case (for instance generational

1sometimes, confusingly, local allocation heaps are also referred to using the term “thread-local heaps”. In this
thesis the latter denomination is used exclusively for logically distinct and independent heaps, to which a single thread
has exclusive access. Another term used in literature for the same concept is “thread-specific heaps.”

11 Pointer Discovery as an Enabling Technology 171

or replicating garbage collection techniques, local allocation heaps and so on), but the charac-
teristic advantages of the thread-local heaps cannot be obtained for the memory blocks allocated
in the shared heap. Furthermore, performing a garbage collection of the shared heap implies
determining if there exists any path from local roots to the shared heap, therefore additional syn-

chronization with the local heaps is necessary. In other terms, a garbage collection of the shared
heap can be as expensive as it would be collecting a single, common heap.

That leads to two efficiency considerations: first of all, the more blocks are allocated in the
local heaps, the better the performance (the more frequent the local garbage collections will be).
Additionally, certain blocks, which are part of shared data structures, will become at some point
during their life part of the shared heap. Some applications might rely on large structures which
are continually accessed by several threads, and in that case a thread-local heap system might
be of little help, but other applications might only occasionally need inter-thread communica-
tion. The performance gain, in this case, can be quite noticeable, especially if the cost of thread
synchronization, for the chosen GC algorithm, is relevant.

11.1.3 Shareability by reachability

The definition of “shared”, in practice, is open to interpretation. The simplest definition of share-
ability defines a heap block as shared if it is reachable from data structures that are common to
more than one thread as, for instance, Java static variables and global roots. According to this
definition, as soon as a pointer is created to a local block from a shared structure or a block al-
ready shared, the local block becomes shared, as do all the blocks transitively reachable from it.
The actual implementation could materially move the blocks in a separate memory area, or just
flag the block as “shared” without moving them. Since it is a pointer write that can cause blocks
to change heap, the possible implementations will typically involve a write barrier of some sort.

11.1.4 Static analysis

An alternative definition of “shared,” for memory blocks, can be obtained if a static analysis of the
program code is performed. As shown by RRUFO(Q and Steensgaar®{e0Q, a static escape
analysis can be performed to discover those blocks that, despite being possibly reachable from
multiple threads, are in reality only ever used by a single thread, and can be consequently safely
allocated in the local heap. The blocks that appear, with the static analysis, to be potentially
used by more threads are instead all preallocated in the shared heap, and no block is dynamically
moved from the local to the shared heap.

While the technique looks appealing, no dynamic profiling is used and a purely static analysis
is used while deciding that a certain block should be preallocated in the shared heap. That could
cause more blocks than necessary to be classified as shared rather than local, reducing the poten-
tial gain obtainable from a thread-local heaps system. On the other hand, a dynamic mechanism
as the one previously described, that relies only on the notion of reachability, might find that
certain memory blocks are reachable by shared structures even though the escape analysis could
determine that they are actually only used by a single thread. In such cases, a block allocated in a

11 Pointer Discovery as an Enabling Technology 172

local heap would be moved into the shared heap, according to reachability, unnecessarily. Inter-
estingly, the two approaches are not mutually incompatible, and could be combined, in principle,
as suggested later in Appendix11l In the remained of this discussion, memory blocks will be
considered to be shared if they are reachable by multiple threads.

11.2 Implementation alternatives

As previously mentioned, implementing shareability by reachability implies the use of some tech-
nique (usually a write barrier) in order to detect when a heap block becomes reachable from mul-
tiple threads, so that it can be properly flagged, or moved. The invariant that must be maintained
is that no pointer is ever present pointing from the shared heap into a local heap. Since a reference
to a local block can only become known to other threads if it “leaks” into the shared heap or a
global root, it is sufficient for each thread to keep under control the pointers it creates from the
shared heap, or a global root, into its own local heap. If the creation of such a pointer is attempted,
the invariant would be invalidated, and a corrective action must be taken. In order to reestablish
the invariant, the block must be moved into the shared heap, together with its transitive closure.

The use of write barriers is not the only possible option to detect the creation of new references
from the shared heap into a local heap, but it appears to be the simplest and probably most efficient
solution. Unless specialized hardware is used, the only alternative appears to be the use of the
MMU to intercept all writes to the shared heap. In that case, however, all writes to the shared
heap would cause a trap, which is likely to involve a very large overhead.

11.2.1 Copying vs. flagging

From the point of view of the implementation, the logical subdivision in multiple local heaps and

a shared heap can be implemented in different ways. The allocated blocks can be, for instance,

flagged as being logically in one heap or another, even if they physically reside in the same address

range. Alternatively, the various heaps could be kept in different memory areas, and the blocks

copied from a local heap to the shared heap when they become reachable by more than one thread.
Moving heap blocks involves finding all the pointers that point to the block that is being moved,

and patching them with the new address. That is a rather expensive operation, and simply flag-

ging the blocks, therefore, would appear at first a more convenient solution. However, there are

a couple of important drawbacks. First of all, it is no longer possible to freely allocate indepen-

dently blocks in local heaps without synchronization (unless local allocation heaps, as previously

described in Sectiol.1.1, are used to avoid most of the synchronisation). Additionally, it is

not possible to perform a moving garbage collection of the memory used exclusively by a single

thread, without synchronisation with the remaining threads, since all blocks physically reside in

the same space. Finally, and more importantly, the cost of the write barrier can bgegme

high, since it involves finding the flag local/shared of each of the two blocks and comparing them

each time a pointer is written. In the paper by Domani et@KI[*02], their conclusion is that

“the overall garbage collection time was cut on average by about 50%” using thread-local heaps.

11 Pointer Discovery as an Enabling Technology 173

However, the cost of their barrier is so high that “the improvement in collection was offset by the
cost of the write barrier.”

11.2.2 Segregated heaps

The idea of moving the blocks to a different memory space, copying their content, is also sum-
marily dismissed, in the same report, arguing that moving blocks out of the local space when they
become shared (via the write barrier) “[...] requires knowledge of all the local references to the
moved objects [...] Finding these references would be an unacceptable cost.” While it is true that
the mentioned operation is expensive, there is no analysis in the paper of the real frequency with
which such an operation would be necessary. In particular, if it is possible to predict correctly,
using a profiling technique, the correct heap in which to preallocate most blocks, the number of
times in which some blocks would need to be moved could be rather low.

If the local and shared heaps are kept segregated in different address ranges, an implementation
of the write barrier can obtained with little more than the comparison of two pointers, and reduced
to just one or two additional assembler instructions per pointer write in the heap. If, on average,
the write barrier does not trigger further operations, and the number of block copies that would be
required is low, having a shorter write barrier while sporadically moving physically heap blocks
from the local to the shared heap could end up being a very convenient solution after all.

A study, conducted by the author on the applicability of this technique, seems to indicate that,
being able to preallocate blocks in the right heap, the number of blocks that need to be moved can
be quite modest. A summary of the study conducted, and the results obtained, is available in Ap-
pendixB. Implementing segregated heaps as described involves however some difficulties, which
will be described in the following section. Pointer discovery will be the most straightforward
solutions to those problems.

11.3 Pointer tracking: a practical solution

Implementing thread-local heaps using segregated heaps, as said, involves the use of write barriers
(either using explicit checks or using the MMU to trap the accesses) that can intercept the creation
of new references from the shared heap into a local heap. As a consequence of an attempt to write
such a reference, the referenced block, and an arbitrarily large number of further blocks, might
need to be moved from the local heap into the shared heap. The write barriers can be considerably
simpler using segregated heaps than they would be using flags for each heap block. However,
moving memory blocks on-the-fly (during a pointer write) involves some additional issues.

Since it is not possible to determine in advance which blocks will need to be moved, every
time a pointer is written the content of the heaps might need adjustments. In other terms, all
the pointers to heap blocks in the system could need to be adjusted, be they in the heap, in
the stack or the registers, every time one of the threads performs a write operation involving
a pointer. If the threads are scheduled preemptively, or if there are multiple microprocessors
working simultaneously, all the remaining threads could be at arbitrary points in the code.

11 Pointer Discovery as an Enabling Technology 174

The set of techniques discussed in this Ph.D. research, however, are designed exactly to obtain
the complete set of pointers active at any point in the code. Using the techniques described,
it becomes therefore possible to move memory at every moment without imposing particular
restrictions on the code. The general pointer discovery technology, consequently, is not only
suitable to implementing known program services, but it is also a precious instrument that can
enable the development of new technologies.

What a wonderfully witty quote!
— Antonio Cunei , Ph.D. candidate

Chapter 12

Evaluation and Conclusions

This thesis has explored the software infrastructure required to support program services like

garbage collection, persistence and migration when using fully optimised native code, so that the

various services can operate preemptively, at every machine instruction. An extensive discussion

about the requisites, the complexities and the advantages of such support was followed by a

description of the techniques that can be used to implement the desired support. Aspects already

present in literature were analysed in much greater depth, and new techniques introduced.
Among the many technical issues discussed, this work has analysed:

e the common requirements for the preemptive execution of the mentioned program services
e the use of “PC maps” to store the necessary information for every machine instruction

e methods that can be used to determine where pointers are located in registers, for every
machine instruction, including a particular form of liveness analysis

e issues and techniques involved in determining where pointers are in the stack and the heap
e the mechanisms used at runtime to obtain the data necessary to the service routine

e an experimental prototype used to expose some of the less obvious technical details, in-
cluding the interaction of preemptive services with legacy environments, the fine details
involved in register windows and delay slots, and the interface with an existing compiler
system

e the issues involved in supporting fully optimised code, in particular techniques that can be
used to deal with derived pointers

e the use of PC maps to support memory-management techniques, in particular segregated
thread-local heaps

This research has originated some algorithms and techniques believed to be new, as will now be
explained.

175

12 Evaluation and Conclusions 176

Contributions

The main contributions of this research are the following:

0O A form of liveness algorithm has been developed that can be used to determine the state,
out of a fixed set of possible states, of a register or variable at every instruction. Such
information is calculated using local def/use information for each instruction, information
that however is not trusted to be consistent. A series of consistency checks are shown to
be possible using simple algorithms that have modest computational complexity. All of
the algorithms are formally explained and justified in Chaptek non-trivial extension to
the case of Delayed Control Transfer (delay slots) is also investigated, and the consistency
checks suitably adapted.

0 The experimental prototype described in Chapterthe first implementation described in
literature able to generate PC maps from multiple source languages without requiring mod-
ifications of pre-existing front ends. This result shows that it is possible, at least to a very
large extent, to decouple the language front ends from the actual generation of PC maps.

O A comprehensive and analytical compendium of concepts and techniques related to the
implementation of PC maps has been developed in detail. The experience gained while
analysing the problems and implementing a prototype has been documented in this thesis,
and it will hopefully be of use to other researchers.

O Anoriginal approach to the handling of derived pointers, reducing them to internal pointers,
is also believed to be described here for the first time. While the technique entails some
additional work in the heap manager, arising from the need to support internal pointers, the
idea appears to be worthy of further investigation. The use of derivation tables, in the style
used by Diwan at al., remains a valid alternative.

0 A further new element contained in this work is the applicability of PC maps defined on
every instruction as a possible solution to the implementation of certain memory manage-
ment techniques, in particular segregated thread-local heaps, as discussed inl3e2#n
More details on this aspect are available in Apperilix

Evaluation

The use of PC maps can enable a service routine, like garbage collection or checkpointing, to
intervene with a finer granularity than possible using additional instructions inserted at selected
points in the code. Potentially, the approach can be used to inspect and alter the state of the
memory at every machine instruction. In that respect, PC maps have the potential to reduce
latency when a service routine is called. When preemptive thread scheduling is used, avoiding
the need to roll forward all the threads to safe points can lead to a noticeable reduction in overhead
when invoking service routines.

Certain aspects of the technique might however benefit from further investigation. In particular:

12 Evaluation and Conclusions 177

e The handling of derived pointers currently involves some trade-offs between the level of
code optimisation and possible runtime overheads. Finding an implementation of the heap
manager that can minimise such overheads would allow for a better support of derived
pointers.

¢ In order to fully realise the potential of the technique, and to be able to interrupt all the
threads at arbitrary moments, the use of PC maps should be extended to libraries and system
components, which is difficult to do in a legacy host system. Improving the cooperation
between user code and existing legacy code would be important to improve efficiency in
a system, hosted by a conventional programming environment, that relies on PC maps to
handle service routines.

On the other hand, definite positive aspects also emerged from the analysis and the test imple-
mentation. For instance:

e Implementing PC maps, at every machine instruction, was shown not to be a problem even
in the presence of unusual microprocessor features like register windows and delay slots.
It has been shown that multiple programming languages can be supported using PC maps
within the same compiler system.

e The same infrastructure, offering detailed information about pointers, can also be used to
support memory management techniques that require memory to be moved on-the-fly.

e The size of the additional tables and data structures needed to support preemptive service
routines is generally quite modest.

e While supporting certain features of programming languages can be more or less challeng-
ing, none among the most fundamental structural features of programming languages was
found to be an inherent obstacle to the use of PC maps, and consequently to preemptive
program services.

In conclusion the technique has good potential, but certain aspects could be improved with further
study, in particular offering an efficient support to derived pointers while using fully optimised
code. Synchronisation with a legacy host system can also be challenging, and more work could
be devoted to that aspect. The use of PC maps with fully optimised code, especially if derived
pointers are required, might be somewhat premature for implementation in production systems at
this stage.

Nonetheless, the technique is indeed promising and, as extensively discussed, there are no major
technical obstacles to its implementation. Furthermore, the information supplied by PC maps
can be used to implement forms of preemptive memory manipulation that would otherwise be
unavailable. As to the advantages that can be obtained with respect to existing systems based on
safe points, a definite answer can only be obtained by implementing a more complete prototype,
able to support most of the features required to run real-life programs. The real measure of the
benefits that can be achieved also depends, to some extent, on the ability to address efficiently the
aspects previously described. While some ideas have been suggested in this thesis as to possible
paths to follow, there is plenty of scope for more research, and for further implementation ideas
to be developed.

12 Evaluation and Conclusions 178

Future developments

There are several immediate developments that can follow this work. Some of them are listed
below.

¢ Implementing preemptive support for program services, using optimised code and also sup-
porting derived pointers, is possible using the techniques described in Chaptt the
moment, however, the systems described in the literature are only able to support either
derived pointers but not preemptioD§MH92], or preemption but not derived pointers
[SLC99. An extension of the prototype described in this thesis in order to support derived
pointers preemptively would be the first system to support all the named features while us-
ing optimised code. In particular the techniques described by Diwan were implemented on
the same platform as the prototype described in this work (the GCC suite), which should
simplify a porting effort.

e One of the relevant aspects of this work is the separation between the various service rou-
tines and the rest of the system, enabling the use of different services with the same code.
That should enable, for instance, preemptive checkpointing in a persistent system. So far,
there does not seem to be any report of systems implementing any kind of service preemp-
tively except garbage collection. A straightforward development of the current work could
be writing a simple service routine implementing checkpointing, for instance, and verifying
that the operation can indeed be executed preemptively as expected.

e While this work has focused primarily on garbage collection, preemption and migration,
other program services can also benefit from the general technique. A possible develop-
ment would be to explore the requirements, and the possibly more complex infrastructure,
necessary to support further program services. Exception handling, for instance, is not de-
scribed in this work, but its integration into the system described might be useful. A paper
by Chase describes some of the problems related to the preemptive treatment of exceptions
[Cha94. Debugging can also be considered, to a certain extent, as a program service, and
a discussion on the subject can be found in the documentation related de-tisgstem
[JRR99.

¢ In the longer term, the prototype could be made more robust and ported onto different mi-
croprocessor architectures. Implementing more features useful for a production system,
as discussed in Sectidh9, would enable the system to become a more complete pro-
gramming toolkit, able to support transparently preemptive program services with a more
extensive range of real-life programs and programming languages. An appealing feature
of such a toolkit would be the ability to easily add and replace service routines without
altering the compiled user code, thanks to the standard interface between the runtime core
and the various services.

Evaluation and Conclusions 179

Conclusions

The use of PC maps can effectively support preemptive program services, and the same technique
can be of help while developing memory management techniques. While certain issues remain
open (an improved support for derived pointers, for instance), there is plenty of promise in the
overall technique. As a consequence of the experience gained in this work, it is also possible to
strongly advocate the inclusion of a clear separation among multiple primitive data types, down to
the level of the assembly code, in the core structure of compilers. The feature can be used to obtain
more detailed information about the data manipulated by the final compiled code, simplifying the
implementation of services like garbage collection and persistence.

It is the hope of the author that this work can be a useful reference to those who might want
to explore the subject further, and possibly devise additional techniques. The time spent working
on it was, for me, a continuous discovery of technical, human, and scientific aspects. It was also
a humbling and enlightening lesson about the meaning of research, and it certainly taught me a
great deal about how to develop a research project. It is this last aspect, that | personally find the
most important result obtained.

Writing code is an act of creativity.
It isn’t science and it isn’t engineering.
— Bryan Dollery , DevX.com

Appendix A

JBE and ExactVM

The JBE Java compiler was developed by Sun Microsystems as the optimising compiler of Ex-
actVM. During my internship in Sun Microsystems Laboratories in Mountain View, California, |
discovered, thanks to Mario Wolczko, that the internal structure of JBE made use of techniques
that are closely related to the ones described in the present work. Although there is no publicly
available literature describing the architecture of JBE, Ross Knippel, David Cox and Chuck Ras-
bold kindly explained to me in detail some of the internals of their compiler. What follows is

a short report based on an extremely interesting meeting | had with them at the Sun campus in
Santa Clara, CA.

The origin of the project lies in a previous compiler named UBE (Universal Back End), which
had multiple front-ends for FORTRAN, C and C++. The focus of the project later shifted on the
Java language; the previous front-ends were replaced by a Java front-end and support for exact
garbage collection was added. The compiler was renamed JBE, and was integrated into Sun’s
ExactVM (also known as ResearchVM), together with a basic Java interpreter and a simpler JIT
compiler.

The way in which JBE achieved exact garbage collection was through the creation of tables, in
the form of bitmasks, that allowed the system to identify, for specific locations in the compiled
code, which registers and stack locations contained references. Although the tables were gener-
ated only for specific points in the code, according to their description of the system, the tables
could have been generated, potentially, for every machine instruction. JBE contained therefore, at
least to some extent, the compiler infrastructure that would have allowed garbage collection and
other memory operations to be performed preemptively.

The information contained in the tables was used to quickly obtain the mode (reference or
non-reference) of each register and each stack slot. Since those tables were accessed very often,
no attempt was made to compress them. A static liveness analysis was performed to locate the
pointers in registers and stack slots. The ambiguities in the use of stack slots were resolved by

180

A JBE and ExactVM 181

modifying, with a separate pre-pass, the stack offsets so that no stack slot could be used as both a
scalar and a reference within the same routine.

Offering support exclusively to Java, however, allowed the developers to avoid some of the traps
described elsewhere in this work. For instance, only pointers to the initial locations of objects
were required. Arrays can never be contained in the stack; therefore, the mode of each stack slot
can be determined by a simple liveness analysis (see s&8éor further information). Because
of the structure of the compiler, it was never necessary to deal with split pointers.

There cannot be a crisis next week. My schedule is already full.
— Henry Kissinger , 1923 -

Appendix B

Preallocation in Segregated
Thread-local Heaps

As discussed in Sectidhl.2.2 the use of distinct memory address ranges to store the shared and
the local heaps in a thread-local heap system allows the implementation of the write barrier to
be reduced to very few machine instructions. However, copying objects from the local heap to
the shared heap is a potentially very expensive operation. In order to reduce the need for object
copying, it is desirable to preallocate the objects, if possible, directly in the most appropriate heap
(shared or local) so that no further object relocations are required.

However, it is not easy to decide when to preallocate an object in the shared heap. We have
previously mentioned that a static analysis can be used to decide in advance when certain objects
are certainly local. However, the use of some dynamic information, obtained from an actual
program run, could offer a better indication of the heap in which to preallocate objects. In this
appendix, some original research will be presented about the use of dynamic profiling in the
context of a thread-local heap system, implemented using distinct address spaces for the various
heaps.

B.1 The call chain as an indicator

A simple, but very effective, method to determine whether an object is likely to become shared
or not, is to verify what happens to all the objects previously allocated at a certain allocation site,
possibly using, as a context, the last part of the dynamic call chain that led to that point in the
program. The overall idea is that some parts of the program are enclosed in loops that perform
similar operations repeatedly. If an object is allocated in a point of the program that is reached
through a certain call chain, and that object becomes shared, it might happen that other objects,
allocated through the same call chain, follow a similar history.

182

B Preallocation in Segregated Thread-local Heaps 183

The first step in the analysis can be to verify whether this hypothesis holds, so that we can use
the call chain (or part of it) as an indication of the likelihood of an object to become shared. Sim-
ilar studies have been conducted, with interesting results, in the context of generational garbage
collection, trying to preallocate objects likely to have a long lifetime directly in the old genera-
tion. In a paper by Cheng et alCHL98], the authors identified allocation sites likely to allocate
long-lived objects by performing a preliminary run of the program, from which some profiling
information is obtained. While more detailed information is available after the completion of a
test run, the need to proceed with a preliminary, separate data-gathering run may be inconvenient.
Domani et al. DKL *02] applied a similar technique, opportunely adapted, to thread-local heaps.

In their work, a statistical analysis is performed at runtime in order to discover which allocations
sites are most frequently used to allocate blocks that eventually become shared. Those sites are
then modified in order to preallocate blocks directly in the shared heap. Their choice was to gather
the necessary data using a preliminary test run, and proceed with the analysis only afterwards.

B.2 Dynamic profiling

An alternative way to obtain data concerning the allocation sites could be the use of dynamic
profiling techniques. The idea is to use information gathered dynamically on the past program
behaviour to make predictions about its future. Such predictions are then used to adjust some
execution parameters on-the-fly, hopefully improving performance. Hatae0[l] explored the
feasibility of dynamic profiling applied to pre-tenuring, using the last part of the call chain to
make decisions about which objects to preallocate in the old generation space without the need
for a separate data-gathering run.

The missing step is trying to explore the efficacy of dynamic profiling used to create predictors
in the context of thread local heap. While it is true that the final condition of a block (local or
shared) cannot be known for certain until the block eventually becomes shared or dies, it may be
interesting to explore whether the transient behaviour of past blocks allocated at a given allocation
site can be used as a reliable indicator of what will happen to other blocks. If that is the case, a
statistical analysis could be used to decide dynamically whether to preallocate further blocks,
allocated at the same site, directly in the shared heap. The use of such a dynamic profiling,
applied to thread-local heaps, was seemingly never applied in literature. It will be shown that, for
some programs, even a very simple profiling technique (that involves very little overhead on the
normal program execution) is sufficient to make surprisingly accurate predictions.

B.3 Correlating allocation sites and shareability

As previously mentioned, a possible way of predicting whether a heap block that is being allocated
will become shared or not is to verify whether there is a correlation between that condition and the
allocation site. We will use the term “allocation site” in a general sense to refer to the combination

of the actual position in the code where the allocation is requested, in conjunction with the most
recent portion of the dynamic call chain. If we can show that there is a reasonable correlation

B Preallocation in Segregated Thread-local Heaps 184

between shareability and allocation sites, then it is fair to assume that the allocation site can be
used as a sufficiently reliable indication of whether it would be convenient to preallocate certain
objects in the shared heap or not.

The use of allocation sites to preallocate objects has been described extensively in the context of
generational garbage collectors. For example, the already mentioned Chengeli&8] gather
information about allocation sites likely to allocate tenured objects from preliminary test runs and
Harris [Har01] gathers similar information dynamically. Using of allocation sites as predictors to
preallocate objects in a thread-local heap system has been described by DKianOp]. The
criterion they used was to consider likely to allocate shared memory blocks those allocation sites
in which, in the test run, at least 99% of the allocated blocks eventually became shared. Their
good results show empirically that a correlation between allocation sites and shareability exists.
However, it is not immediate to understand how strong that correlation really is, and it is actually
not easy to represent that correlation in a clear numerical or visual form.

A useful way to visually correlate allocation sites and objects having a certain property is used
by Harris, who uses a particular type of diagram to illustrate how allocation sites are correlated to
objects tenured or non-tenured, in the context of a generational garbage collector. The same kind
of graph can easily be adapted to the context of thread-local heaps. Therefore, before proceeding
with the details of the prediction techniques, it can be useful to show concretely the kind of
correlation that exists, so that the use of allocation sites to predict shareability is actually justified.

B.4 Percentage of objects vs. categories

The way in which the graph is to be inter- y
preted is the following. Let us assume we 1
have a number n of items, each of which has
a certain numeric property, represented as a 06
number between 0 and 1. If we desire to have
a visual indication of the distribution of that
property among the items, we can imagine di- 0.3 08 1
viding the segment [0,1] on the x axis in n
equal parts, one per object. For each item, we
plot the value of the property as a number in
[0,1] along the y-axes, while the x value is the value along the x-axis assigned to that item. The
resulting graph, in general, will alternate points with high and low y values in a non very intelligi-
ble way. However, if we pre-sort the items according to the value of the property before plotting
the graph, the result will be a visually clear representation of what proportion of items has what
value for the property in question.

For instance, in FigurB.4.1, 30% of the items have the property set to 1, 50% to 0.6, and 20%
to 0.2. We can easily use the same graph to depict what percentage of blocks become shared
for a certain allocation site. We will use as “items” the allocations sites and as “property” the
percentage of blocks, allocated in that allocation site, that become shared. In the ideal case, we

Figure B.4.1 : Distribution graph

B Preallocation in Segregated Thread-local Heaps 185

would like to see sites with a percentage of either 100% or 0% of the blocks shared, so that it

is possible to separate completely allocation sites that allocate local blocks from allocation sites

that allocate shared objects. Comparing that ideal case to the reality of some test benchmarks will
give us an idea of how good that correlation is.

B.5 Correlation graphs

In order to gather the necessary information, some traces were obtained from an adapted version
of the Tracing Java Virtual Machin&\Jol99], an instrumented Java VM capable of tracking the
complete history of all the allocations and modifications applied to objects. The traces recorded
contained the value of the program counter and the last elements of the dynamic call chain. An-
alyzing the trace files, the shared/non-shared condition of each object was reconstructed, and the
following graphs were generated, in which the correlation between the shared/local condition and
the allocation site is shown.

The obtained correlation graphs, related to dif-
ferent test programs, are shown in FiguB§2.1
and following, on page495-199 For additional m
convenience, a scaled version of Figld 2.3(a)
is shown here. The benchmarks used are explained
later, in SectiorB.9. The different lines shown in 3
each diagram represent the correlation that exists -
between the allocation sites (on the y axis) and the
percentage of objects, allocated in that site, that| - 5 5 o R
eventually become shared (on the x axis). Each
line refers to a different portion of the dynamic call
chain used when determining the allocation sitesfigure B.5.1 : Correlation graph: Volano
The graphs show that the greater the portion of the
dynamic call chain is considered, the stronger the correlation becomes.

It is visually apparent that the allocation sites do have a strong correlation with the shared/local
condition of objects. In certain cases, some allocation sites allocate both shared and local objects,
presumably because of different lives of objects allocated there, during different stages of the
program execution. Nonetheless, the use of allocation sites as indicators of shareability appears
to be overall reasonable. Before concluding that the allocation site of an object can be reasonably
used as a predictor, however, there is another detail that should be checked, as explained in the
next section.

B.6 Delay graphs

The correlation graphs, discussed in the previous section, represent the ideal case in which the
final condition of all objects (shared or not) is known in advance. Such information, unfortunately,
is not fully available during a dynamic profiling, which can only rely on the data collected up to a

B Preallocation in Segregated Thread-local Heaps 186

certain point during execution. That would not be a particular problem for generational collectors,
since all objects are promoted to the old generation when they reach a certain age, and it is not
necessary to wait the end of the program to determine whether the object was promoted or not.
Conversely, an object allocated in a thread-local heap can remain local for an arbitrarily long time
before becoming shared. The partial information obtained during execution could therefore be
misleading, identifying as local an object which will eventually become shared.

In order to have an idea of the actual delay be-
tween the allocation of an object and its transition
to the shared state, a different graph is constructed.

In the delay graphs shown in FigurBsl2.1and
following, all the objects that become shared, and
which are allocated in an allocation sites that al-
locates at least two objects, are distributed on the
X axis. The corresponding y value is the number
T o o of further objects allocated, in the same allocation
site, between the allocation of that object and the
moment in which it becomes shared. The objects
Figure B.6.1 : Delay graph: Volano are sorted, on the x axis, according to their value on
the y axis, so that the resulting graph is monotonic.
FigureB.12.3(b)is copied here, in a reduced size.

The graph shows how many other objects are allocated, in the same site, between the creation
of a given object and the moment in which the same becomes shared. The higher the number,
the greater the lack of precision in the prediction that relies on objects previously allocated in
the same site, since some of those objects appear to be local, while in reality they will become
eventually shared.

Although the results vary, depending on the specific benchmark, the tests suggest that the delay
is usually rather low, especially if greater portions of the dynamic call chain are used to determine
the allocation site. That means that most of the blocks destined to be shared do become shared
after just a limited number of other blocks are allocated in the same site. As a consequence, after
the initial stage we can assume that, on average, most objects destined to become shared will
be recognisable as shared even using a dynamic profiling. Naturally, the greater the number of
objects allocated in a certain allocation site, the higher the chance that older objects have become
shared in the meantime. It can be expected, therefore, that the precision of the prediction will
increase over time.

Summarising, the delay graphs give a general indication that dynamic profiling should be usable
to predict shared objects with a reasonable degree of accuracy. A test of the usefulness of dynamic
predictors, described later, seems to validate to a large extent the use of dynamic profiling for
thread-local heaps.

T

B Preallocation in Segregated Thread-local Heaps 187

B.7 Traps & Copies

As previously discussed, a system which uses segregated thread-local heaps would have the fol-
lowing characteristics:

e one local heap per thread
e one shared heap accessible from all threads

e each of the mentioned heaps uses a unigue addressing range, separated from the others
(segregated heaps)

e each local heap contains only blocks that are reachable from the corresponding thread. If a
block becomes referenced from a shared structure, that block and all those reachable from
it are moved in the shared heap

¢ the creation of new references is monitored using write barriers, so that new references
from the shared heap into local heaps can be detected

In accord with this structure, the factors that will affect the efficiency of the system will be:

1. the ability to write a short write barrier

2. the number of occurrences in which a reference write from shared to local is detected, in
proportion to all the reference writes

3. the proportion of blocks that need to be copied as a consequence

4. the proportion of blocks that are allocated in the local heap and are never moved from there

A write barrier will be executed each time a pointer is written in the heap. Keeping the execution
time of the barrier as low as possible will be therefore very important. Also, if the reference writes
from shared to local are only a small fraction of all the pointer writes, it is possible to use, in the
write barrier design, the use of MMU traps. Even though serving a hardware trap is in general
expensive, if we are able to design the write barrier so that it is on average shorter, and the trap is
only rarely served, the overall gain can be considerable. In the remainder of this discussion, the
term “trap” will be used to refer the detection of a pointer write from shared to local to indicate
that, if the MMU is used to detect the pointer write, an exception is generated and a (relatively
expensive) trap handler is called. The write barrier can be also implemented, however, using a
simple sequence of test and branch.

The number of memory blocks that need to be copied from a local heap to the shared heap is
also important for efficiency. As detailed in the introduction, moving a block is quite expensive,
since all the references to the block which is being moved need to be found and updated. On the
other hand, only the local heap that contains the block can contain references to it.

In addition to the parameters listed above, there are additionally considerations that should be
made about the efficiency of the system. If everything was to be preallocated in the shared heaps,

B Preallocation in Segregated Thread-local Heaps 188

for instance, the write barrier would never trigger a copy and there would never be any need to
copy memory blocks. However, none of the blocks would ever be allocated in the thread-local
heaps, and the advantage of performing separate garbage collections would be lost. Consequently,
it is also important to try and maximize the number of blocks that can spend their lifetime entirely
within a local heap.

As afinal note, it is important to point out that deciding to preallocate a block in the shared space
affects, in turn, the allocation of other blocks. All the blocks that are referred by the preallocated
block will in turn become shared, even though, without preallocation, they might have lived ini-
tially, for some time, as local. Furthermore, the prediction might be wrong in certain cases, and
some blocks that should have remained local might end up being shared. A certain level of er-
ror, since the predictor is based on incomplete data, is unavoidable. The results reported later,
however, seem to indicate that those effects are, in general, fairly limited.

B.8 Gathering data

As mentioned, the traces obtained thanks to the Tracing JavaVM were post-processed to simulate
the behaviour of a heap system structured around segregated thread-local heaps. Although that
kind of simulation is not designed to give precise timing information as a complete implemen-
tation would do, an analysis of the traces can be used to establish some of the values described
above. In particular, running the same trace file through different simulations can allow us to
compare the efficiency of different prediction techniques.

B.8.1 Without prediction

A first test, useful for further comparisons, consists in the simulation of a thread-local heap sys-
tem, for each of the trace files, without performing any preallocation. That gives an idea, at the
end of the simulation, of exactly how many blocks, out of the total, remain reachable from a sin-
gle thread. We will then compare that number with the number of blocks that remain local in the
system when a predictor is used.

B.8.2 Allocation sites

The main set of predictors, used in the simulations, grouped the allocated blocks in classes ac-
cording to their allocation sites. More precisely, two blocks are in the same class if the value of
the program counter at the time of allocation is identical, together with the last part of the dy-
namic call chain. For each class, the number of blocks allocated in that allocation site and the
percentage of blocks that have become shared so far are used to predict the likelihood that a new
block, allocated in the same call site, will become shared. Some simple tests were performed,
varying the depth of the portion of the call chain considered, the number of blocks that must be
allocated before the predictor starts operating (in the initial phase there is no preallocation), and
the percentage of shared blocks necessary for the predictor to decide that future blocks must be

B Preallocation in Segregated Thread-local Heaps 189

preallocated in the shared heap. To give some examples, a predictor could start preallocating in
the shared heap when, for certain allocation sites:

e using PC and 1 stack value, when, after 5 blocks allocated, 50% are shared
e using only the PC, when, after at least 15 blocks allocated, 95% are shared
e using PC and 2 stack values, when, after 45 blocks allocated, 90% are shared

e using PC and 6 stack values, when, after 5 blocks allocated, 60% are shared

While there are several combinations of parameters that can be used, and, as we will see in a
moment, different way of structuring a predictor, performing simple tests like the above can give
a quick idea of the kind of results that is possible to obtain.

B.8.3 Hashing predictor: simple but effective

One possible argument against the use of dynamic profiling is the overhead imposed by the exe-
cution of data-gathering activity while the program is running. Certainly, determining, as above,
the current allocation site and comparing it against some sort of table or data structure, in which
each site has distinct counters and statistics, is quite complex. For this reason, a much simplified
predictor was used, trying to preserve some of the information obtainable from the allocation sites
but at the same time trying to minimize the bookkeeping operations necessary to determine when
to preallocate objects in the shared heap.

As an experiment, a hashing predictor was used, structured as follows: in a single table, an
index is obtained using a simple hashing function that combines the PC and the last values of
the call chain. For each position in the table, an integer counter is maintained, initialised to a
predetermined negative vald¥e When a new block is allocated, its hash value (the value for
its allocation site) is calculated and stored in an additional field of the block. Initially all blocks
are preallocated in the local heap. For each block allocated as local, the matching counter is
decremented by a constait. If, as execution progresses, the object is copied from the local
heap into the shared heap, the corresponding value in the table is incremented by the sum of the
previous constar@@_ plus another constaf, so that, as more objects become shared the counter
gets closer to positive values, while for each object allocated as local the counter is progressively
decremented. The predictor starts to preallocate objects as shared if the associated counter, for
that allocation site, is greater than zero. The simple hashing function used consists in the lower
bits (depending on the size of the table) of an exclusive “or” between the PC and the last return
address. An exclusive “or” of PC and the last two return addresses has also been evaluated, as has
been an exclusive “or” of the return address, shifted right, with the PC.

Such a predictor is rather crude, and in general it might happen that local and shared objects
allocated in different allocation sites interfere with each other, causing erroneous predictions.
The number of different allocation sites that is necessary to encode using the hash function can
be greater or smaller, affecting the performance of this solution. However, in practical terms, the
tests conducted showed a remarkable effectiveness of this simplified predictor, with overall results

B Preallocation in Segregated Thread-local Heaps 190

not too distant from the predictor previously described, more complete but more complex to
implement. Maintaining the simple mechanisms described for the hashing predictor is extremely
easy, and can be implemented with really minimal overhead, making the idea of using dynamic
profiling even more attractive.

B.8.4 Additional considerations

In the above predictors, the decision to preallocate in the shared heap, once taken, is never re-
versed. It might happen, however, that the prediction can be erroneous for many blocks if, in
the program, to a first phase in which an allocation site generates shared blocks follows a second
phase in which the same site allocates local objects. Those blocks would be needlessly preallo-
cated as shared.

Reversing the decision, however, is rather problematic. Once the system begins to preallocate
the blocks corresponding to a certain allocation site in the shared heap, the information originally
used by the predictor becomes biased and no longer useful A possible way to discover whether
an allocation site should return to local allocations could be to allocate occasionally, even if the
predictor says otherwise, one of the blocks as local and check whether it becomes shared after a
while. However, the interdependencies of the various blocks, and the fact that some blocks could
have been needlessly allocated in the shared heap already, could cause the block to become shared
because of the preallocation of previous blocks.

Another alternative could be to reset the predictor statistics, for each call site, after a certain
number of blocks predicted to be shared, or even to reset the predictor for all the call sites simul-
taneously. Once again, the interdependencies among objects could sometimes cause the newly
allocate blocks to become shared unnecessarily. Conversely, restarting the predictor would mean
that some objects, which should be preallocated as shared, are instead allocated as local while
enough new data for the predictors is gathered. No specific study was made in this analysis of
predictors able to reverse their decision.

B.9 Some results

Some trace files, obtained from simple benchmarks, were processed, and the behaviour of various
predictors tested. Because of the test environment used, it was somewhat difficult to obtain traces
of heavily multithreaded functions. A test run for the Volano benchmark, which simulates a chat
room server application, was nonetheless successfully analysed. During execution, the test run of
the server portion of Volano created 412 threads, offering a good example of heavily multithreaded
application to study.

Other benchmarks used were the 227 (mtrt) and 213 (javac) benchmarks from SpecJVM98, and
other tests (“Pretzel” and “ParaffinsP{z03) that create complex data structures. While these
benchmarks are not inherently multithreaded, it is still possible to determine whether the objects
are reachable from thread-specific structures or from shared ones (from global roots, for exam-
ple). Although the results are not necessarily representative of what happens in massively multi-

B Preallocation in Segregated Thread-local Heaps 191

threaded applications, studying those cases can give some indications of the program behaviours.
Further simulations, in addition to those presented here, would probably be necessary in order to
validate the efficacy of the studied predictors with other heavily multithreaded applications.

Stats for: Objects are always allocated in the private space.

At the end, there were 24,785 traps out of 34,335,990 pointer stores, that is 0%

Excluding the pointer stores in the stack, which were 29,539,883, the traps were 24,785 out of 4,796,107 , 0%
The traps so far caused 39,284 copies to the shared space out of 511,475 objects created so far, 7%

Of all objects allocated, 511,475 were created in the private space and 0 in the shared space

Table B.1: Volano benchmarks, 412 threads. Objects always allocated in the private space

Stats for: predict using PC and 1 stack level when, after at least 5 objs allocated for that site, 50% of them
have become shareable.

At the end, there were 6,654 traps out of 34,335,990 pointer stores, that is 0%

Excluding the pointer stores in the stack, which were 29,539,883, the traps were 6,654 out of 4,796,107 , 0%
The traps so far caused 7,179 copies to the shared space out of 511,475 objects created so far, 1%

Of all objects allocated, 472,455 were created in the private space and 39,020 in the shared space

84% of objects in the shared space were directly preallocated

82% were correctly predicted and preallocated, out of all preallocated

81% were correctly predicted and preallocated, out of all that should have been shared
17% were erroneously preallocated, out of all preallocated

14% were mispredicted, or had to be copied, out of all those eventually in shared space
98% remained in private space, out of those that should have been

It performed 26% the traps and 18% the object copies of the all-private allocation

All in all, this predictor predicted correctly 98% of all objects

Table B.2: Volano benchmarks, 412 threads. Predictor based on allocation sites

TablesB.1 and B.2 show some statistics obtained from the Volano benchmark. The values
shown in TableB.1 refer to a simulation in which no preallocation is performed. Tabhshows
the results when a prediction is made using the allocation sites.

® Stats for: Hashing predictor, table large 32768, start:-10 - increments:2/-1

® At the end, there were 6,578 traps out of 34,335,990 pointer stores, that is 0%

® Excluding the pointer stores in the stack, which were 29,539,883, the traps were 6,578 out of 4,796,107 , 0%
® The traps so far caused 7,356 copies to the shareable space out of 511,475 objects created so far, 1%
®

Of all objects allocated, 473,204 were created in the private space and 38,271 in the shared space

83% of objects in the shared space were directly preallocated

83% were correctly predicted and preallocated, out of all preallocated

81% were correctly predicted and preallocated, out of all that should have been shared
16% were erroneously preallocated, out of all preallocated

13% were mispredicted, or had to be copied, out of all those eventually in shared space
98% remained in private space, out of those that should have been

It performed 26% the traps and 18% the object copies of the all-private allocation

All in all, this predictor predicted correctly 98% of all objects

Table B.3: Volano benchmarks, 412 threads. Hashing predictor

It can be noted that, using a predictor to preallocate objects in the local heap, the number of
object copies required drops dramatically, while the majority of objects can still be allocated in the
local heap and handled with local garbage collection, reducing the need for synchronization. Table
B.3 shows an example of a particularly good hashing predictor, as described in #&i8n
In this particular case, the results are comparable to the much more computationally expensive

B Preallocation in Segregated Thread-local Heaps 192

general predictor. While adjusting the various predictor parameters affects to some extent the
results, all the predictor tried predicted correctly a very high percentage of objects, usually more
than 95%.

B.10 Conclusions

The statistics shown in the tables seem to indicate that, using some simple prediction techniques,
it is indeed possible to reduce the number of copy operations required in a segregated thread-
local heap system to a very manageable level. The resulting lower overhead has the potential to
make the technique viable for some applications, especially considering the potential advantages,
namely the reduced number of synchronizations while performing garbage collections and allo-
cations, and the ability to use compacting garbage collection algorithms, thanks to the address
segregation.

In this research the Volano benchmark was the only massively multithreaded example used (142
threads in the trace file analysed). While the application is admittedly well suited to a thread-local
heap system (the various threads have limited interactions), the application is nonetheless repre-
sentative of a real class of multithreaded programs. Those programs could benefit substantially,
according to this analysis, from the implementation of a segregated thread-local heap system. It
would be however necessary to experiment with further multithreaded applications to verify the
behaviour of such a heap system in general. The preliminary results obtained so far, nonetheless,
appear to be rather encouraging.

It should also be noted that the write barrier, which should monitor all pointer writes in the
heap, is extremely similar to the write barrier that is normally necessary in generational garbage
collectors. In that case as well it is necessary to take action upon the creation of a new reference
from one of the spaces (the old generation) into another space (the new generation). It is rather
simple, therefore, to combine the two write barriers into a single one, so that only pointer writes
in certain directions are intercepted. A particular technigue that can be used for this purpose was
devised by the author as a side product of this study, and it is currently being evaluated by Sun
Microsystems for a possible U.S. Patent Office application.

B.11 Further work

An interesting possibility, apparently unexplored so far, consists in the integration of the static
analysis with the notion of “shared if reachable by multiple threads.” That can be done by forcing
certain objects, determined statically to be always used by a single thread, to reside in a local
heap even though they appear to be shared, being reachable by other shared blocks. In order to
prevent the write barrier from moving those blocks to the shared heap, it is sufficient to flag the
blocks specially. When a pointer is created that originates from a shared block and points to such
a special block, the flag on the target can be checked and, if set, the object is hot moved to the
shared space, since it is known from the static analysis that it will only be used, in reality, by a
single tread. Transitively, all the blocks that are reachable only from local or specially marked

B Preallocation in Segregated Thread-local Heaps 193

objects will only be used, again, by the local thread, and they do not need to be moved to the
shared space. The blocks that are transitively reachable from marked blocks, however, will have
to be marked in turn as special.

The use of such a hypothetical hybrid system could bring further improvements to a thread-
local system that only uses reachability. No concrete implementations, or descriptions similar to
the one here presented, is available in literature. A combined system of the kind described can
certainly be implemented and analysed as a possible extension of the present work.

B Preallocation in Segregated Thread-local Heaps 194

B.12 Graphs

The following pages contain several graphs, one page for each benchmark. Each page contains
two graphs. Each graph represents, using different line styles, the results obtained considering
different portions of the dynamic call chain, in addition to the program counter.réfurn ad-
dresses are considered, for instance, two allocation sites are considered distinct if at least one
among the return address and the topnmastturn addresses on the stack differ in the two cases.

Onthe top of each page, the correlation graphs, as explained in SBdj@how the correlation
between the percentage of objects that eventually become shared, on the y axis, and the allocation
sites, distributed on the x axis and sorted according to the percentage of object that become shared
at that site, so that the graph is monotonic (the number on the x axis represents the percentage of
the total objects considered between that point and the origin).

On the bottom of each page, the delay graphs, as explained in SBdjshow all the objects
that become shared and that are allocated in an allocation sites that allocates at least two ob-
jects, distributed on the x axis (the number on the x axis shows the number of objects considered
between that point and the origin). The corresponding y value is the number of further objects
allocated, in the same allocation site, between the allocation of that object and the moment in
which it becomes shared. The objects are sorted, on the x axis, according to their value on the y
axis, so that the resulting graph is monotonic.

B Preallocation in Segregated Thread-local Heaps 195

3 1
5 S
2 | PC & 1 Ret.Addr.
® =
IS \ ———
e
S 0.8 |
E e I E= PC & 9 RetAddr.
5 ;
g | :
= | “Benchmark: 213 (javac) H
< 0.6 i
2 i
S |
L, {
3 }
k] 3
]
g 0.4 \
c I
5] [}
S {
[0)
: 'l
0
0.2
0 02 0.8 1
Allocation sites
(a) Correlation graph
3301 PC
g 28] PC & 1 Ret.Addr.
ooy =
S 26 A ——
°
£ 24 A
L L S
=24 ¢ v == PC & 9 Ret.Addr.
C
o]
% 20 “Benchmark: 213 (javac) ”
218 4
]
é 16 1
£ 14 A
8
w 12 1
3
< 10
@2
3 81
=)
o
5 6]
8 41
=
>
=2 2
1 ‘ ‘ ‘
0 2000 4000 6000 8000 10000
Shared objects allocated in sites that allocate at least two such objects

(b) Delay graph

Figure B.12.1 : Benchmark: 213 (javac)

B Preallocation in Segregated Thread-local Heaps

196

Percentage of objects that eventually become shared

PC
PC & 1 Ret.Addr.

0.8 -

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: 227 (mtrt) ”

0.6 -

0 0.2 0.4 0.6 0.8 1

Allocation sites

(a) Correlation graph

Number of objects allocated in the site between allocation and shared

PC
PC & 1 Ret.Addr.

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: 227 (mtrt) ”

&
&
\
&
&
\
&
&
\
&
&
\
&
g
\
&
&
\
&
g
\
&
&
\
&
g

L
S

I |
400 600 800100012001400160018002000220024002600280030003200340036003800
Shared objects allocated in sites that allocate at least two such objects

(b) Delay graph

Figure B.12.2 : Benchmark: 227 (mtrt)

B Preallocation in Segregated Thread-local Heaps

197

Percentage of objects that eventually become shared

0.8

0.6

0.4

0.2

PC
PC & 1 Ret.Addr.

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: Volano H

0 0.2 0.4 0.6 0.8 1

Allocation sites

(a) Correlation graph

Number of objects allocated in the site between allocation and shared

30
28
26
24
22
20
18
16
14
12
10

N oA~ O

PC
1 PC & 1 Ret.Addr.

= PC & 9 Ret.Addr.

1 “ Benchmark: Volano H

2000400060008000 12000 16000 20000 24000 28000 32000 36000
Shared objects allocated in sites that allocate at least two such objects

(b) Delay graph

Figure B.12.3 : Benchmark: Volano server

B Preallocation in Segregated Thread-local Heaps 198

‘I .
T ——pC
PC &1 Ret.Addr.

0.8 -

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: Pretzel H

Percentage of objects that eventually become shared

0.2 A

0 0.2 0.4 0.6 0.8 1

Allocation sites

(a) Correlation graph

PC
PC & 1 Ret.Addr.

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: Pretzel ”

Number of objects allocated in the site between allocation and shared

400 600 800
Shared objects allocated in sites that allocate at least two such objects

(b) Delay graph

Figure B.12.4 : Benchmark: Pretzel

Preallocation in Segregated Thread-local Heaps

199

Percentage of objects that eventually become shared

0.8 -

0.2 A

PC
PC & 1 Ret.Addr.

=] PC & 9 Ret.Addr.

Benchmark: Paraffins ”

0.2 0.4 0.6 0.8 1

Allocation sites

(a) Correlation graph

Number of objects allocated in the site between allocation and shared

PC
PC & 1 Ret.Addr.

,,,,,, PC & 9 Ret.Addr.

“ Benchmark: Paraffins ”

5000 10000 15000 20000
Shared objects allocated in sites that allocate at least two such objects

(b) Delay graph

Figure B.12.5 : Benchmark: Paraffins

Nothing is so easy as to deceive one’s self; for what we wish, we
readily believe.
— Demosthenes , 384 BC - 322 BC

Appendix C

Examples

C.1 Pointer discovery in the registers

The following test program is compiled without optimisation.

int ping(int *);
int *pang(int,int*);
void pong(int);

void tinker (int a,int *b)

pong (a+ping (pang(a,b)));
}

Non-optimised SPARC V8 code generated by GCC for the body:

11 0004 FO27R044 st %10, [%fp+68]
12 0008 F227R048 st %11, [%fp+72]
13 000c DOO7AD44 1d [$fp+68], %00
14 0010 D207R048 1d [$fp+72], %ol
15 0014 40000000 call pang, 0

16 0018 01000000 nop

17 001c 82100008 mov %00, %9l

18 0020 90100001 mov %gl, %00

19 0024 40000000 call ping, 0

20 0028 01000000 nop

21 002c 92100008 mov %00, %05

22 0030 C2072044 1d [$fp+68], %gl
23 0034 82034001 add %05, %gl, %9l
24 0038 90100001 mov %91, %00

25 003c 40000000 call pong, 0

26 0040 01000000 nop

Non-optimised SPARC V8 code generated by the customised GCC for the body, with mode an-
notations:

16 0004 F027A044 st %10, [%fp+68]
17 #*TT*148 :%i0 #180

200

C Examples

201

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Key:

> use
~ def
: use
def

regs used: %00,

0008

000c

0010

0014

0018

001c

0020

0024

0028

002c

0030

0034

0038

003c

0040

ptr

ptr

scal
scal

F227R048

D007A044

D207A048

40000000

01000000

82100008

90100001

40000000

01000000

9A100008

C207A044

82034001

90100001

40000000

01000000

st %il, [%fp+72]
#*TT*157 >%il ~184

1d [$fp+68], %00
#*TT*146 :180 #%00

1d [$fp+72], %ol
#*TT*155 >184 %ol

call pang, 0
#*TT*218C >%01 :%00 "%00 #%01

nop
#*TT*800

mov %00, %gl
#*TT*151 >%00 ~%gl

mov %gl, %00

#*TT*151 >%gl “%00
call ping, 0
#*TT*218C >%00 #%00 #3%01 #%02

nop
#*TT*800

mov %00, %05
#*TT*142 :%00 #%05

1d [%fp+68], 39l
#*TT*146 :180 #3091

add %05, %gl, %gl
#*TT*219 #%g1 :%05 :%gl

mov %gl, %00

#*TT*142 :%g1 #%00
call pong, 0
#*TT*213C :%00 #%00 #%0l1 #%02
nop

#%02 #%03 #%04 #%05 #%07 #%gl #%92 #392 #%g3 #3%g4

#%03 #%04 #%05 #%07 #%gl #%g2 #%92 #%g3 #%g4

#3503 #%04 #%05 #%07 #%gl #392 #%92 #%93 #3594

%ol, %i0, %il, %gl, %05 (%00-%05 clobbered by calls

Initial tables, derived from the mode annotations.

initial tables,

0004
0008
000c
0010
0014
0018
00lc
0020
0024
0028
002¢
0030
0034
0038
003c
0040

de

ptr
f use

000000 000000
000000 000001
000000 000000
001000 000000
000000 000000
010000 001000
100000 010000
010000 100000
000000 000000
000000 010000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000
000000 000000

registers: %gl %00 %ol %05 %i0 %il

scal

def use follow

000
000
010
000
000
101
000
000
000
111
000
100
100
010
000
111

000 000010 0008
000 000000 000c
000 000000 0010
000 000000 0014
000 000000 0018
100 010000 001c
000 000000 0020
000 000000 0024
000 000000 0028
100 000000 002c
100 010000 0030
000 000000 0034
000 100100 0038
000 100000 003c
000 000000 0040
100 010000 ---

Tables after the mode calculation:

C Examples 202

The resulting code with the pointer/scalar information. A flag set to ‘X’ means that the corre-
sponding register is a pointer before that instruction.

F027R044 st %10, [%fp+68]
F227R048 st %11, [%fp+72]
DO07R044 1d [$fp+68], %00
D207R048 1d [$fp+72], %0l
40000000 call pang, 0
01000000 nop

82100008 mov %00, %9l
90100001 mov %gl, %o0
40000000 call ping, 0
01000000 nop

92100008 mov %00, %05
C207A044 1d [%fp+68], %gl
82034001 add %05, %gl, %gl
90100001 mov %91, %00
40000000 call pong, 0
01000000 nop

C Examples 203

C.2 Fully optimised code

The original program:

int ping(int *);
int *pang(int,int*);
int pong(int*,int);
void peng(int);
int *poing(int);

void tinker (int a,int *b)
{

int i,3=0;

for (i=ping(b);i<ping(poing(]));i++) {
peng (a+ping (pang(a,b)));
while (pong(poing(a),pong(b,1))) {
if (3<91) |
peng(a-1);
j=pong (b, a+2) ? a*ping(b) : 0;
} else {
j=ping(pang(j,b));
break;
}
}
}

The fully optimised compiled code, with annotations:

.file "x.c"
.global .umul
.section ".text"
.align 4
.global tinker
.type tinker, #function
.proc 020
tinker:
#*TT*790S "tinker"
#*¥TT*955 16 112 2
#*TT*T77 #%10 ~%il

#*XTT*778
save %sp, -112, %sp
#XTT*029W
#*¥TT*223E
#*¥TT*2238
mov %il, %o0

#*TT*151 >%il ~%o00
call ping, 0

#*TT*218C >%00 #%00 #%01 #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%92 #%93 #%94
mov 0, %11

#*TT*142 #%11
b LLL2

#*TT*811U0 ".LL2"
mov %00, %12

#*TT*142 :%00 #%12

.LL14:
call pang, 0

#*TT*218C >%0l :%00 "%00 #%0l #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%g2 #%93 #%g4
mov %10, %o0

#*TT*142 :%10 #%00
call ping, 0

#*TT*218C >%00 #%00 #3%01 #%02 #%03 #%04 #%05 #%07 #%gl #3592 #%92 #%g3 #%g4
nop

#*TT*800
call peng, 0

#*TT*213C :%00 #%00 #3%01 #%02 #%03 #%04 #%05 #%07 #%g1l #3592 #%92 #%g3 #%g4

add %10, %00, %00
#*TT*219 #%00 :%10 :%00

.LL15:
call poing, 0

$*TT*218C :%00 "%00 #%01 #%02 #%03 #%04 #%05 #%07 #39l #%92 #%92 #%93 #%q4
mov %10, %o0

#*¥TT*142 :%10 #%00
mov 1, %ol

C

Examples 204

#*TT*142 #%01
mov %00, %10
#*TT*151 >%00 %10
call pong, 0
#*TT*218C :%01 >%00 #%00 #%0l #%02 #%03 #3%04 #%05 #%07 #%gl #%92 #3592 #%93 #3%g4

mov %il, %o0
#*¥TT*151 >%il ~%00
mov %00, %ol

#*TT*142 :%00 #%01
call pong, 0
$*TT*218C :%01 >%00 #%00 #%01 #%02 #%03 #%04 #%05 #%07 #3591 #%92 #%92 #%93 #%g4

mov %10, %o0
#*¥TT*151 >%$10 ~%00

mov %00, %ol
#*TT*142 :%00 #%01

cmp %0l, 0
#*TT*100 :%0l

be LLL7
#*TT*802B ".LL7"

add %10, -1, %00
#*¥TT*219 #%00 :%i0

cmp %11, 90
#*TT*100 :%11

bg .LLY
#*TT*802B ".LL9"

mov %$il, %ol

#*TT*151 >%il “%ol
call peng, 0
#*¥TT*213C :%00 #%00 #%01 #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%92 #%93 #%q4

mov 0, %11
$*TT*142 #%11
add %i0, 2, %ol

#*TT*219 #%0l1 :%10
call pong, 0
#*¥TT*218C :%01 >%00 #%00 #%0l #%02 #%03 #%04 #%05 #%07 #%gl #%92 #3592 #%93 #3g4
mov %il, %o0
#*¥TT*151 >%il “%00
cmp %00, 0
#*TT*100 :%00
be .LL15
#*TT*802B ".LL15"
nop
#*TT*803
call ping, 0
#*TT*218C >%00 #%00 #%01 #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%92 #%93 #%94

mov %11, %00
#*TT*151 >%il ~%o00

mov %00, %ol
#*¥TT*142 :%00 #%01

call .umul, 0
#*TT*218C :%01 :%00 #%00 #%0l #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%92 #3%93 #%g4

mov %10, %o0
#*TT*142 :%10 #%00

b .LL15
#*TT*811U0 ".LL15"

mov %00, %11
$*¥TT*142 :%00 #3511

LLL9:
call pang, 0

#*TT*218C >%0l1 :%00 "%00 #%0l #%02 #%03 #%04 #%05 #%07 #%gl #%92 #3592 #%93 #3%g4
mov %11, %o0

#*TT*142 :%11 #%00
call ping, 0

#*TT*218C >%00 #%00 #3%01 #%02 #%03 #%04 #%05 #%07 #%g1l #392 #%92 #%g3 #3g4

nop
#*TT*800

mov %00, %11
#*TT*142 :%00 #311
WLL7:

add %12, 1, %12
#*¥TT*219 #%12 :%12
WLL2:

call poing, 0

#*TT*218C :%00 "%00 #%01 #%02 #%03 #%04 #%05 #%07 #%3gl #%92 #%92 #%93 #%94
mov %11, %00

#*TT*142 :%11 #%00
call ping, 0

#*TT*218C >%00 #%00 #%01 #%02 #%03 #%04 #%05 #%07 #%gl #%92 #%92 #%93 #%q4

nop
#*TT*800

C Examples 205

#*¥TT*100 :%12 :%00
bl .LL14
#*TT*802B ".LL14"
mov %il, %ol
#*TT*151 >%il “%ol
#*TT*224E
#*TT*224S
nop
#*TT*998
ret
#*XTT*404
restore
#*¥TT*019W
#*TT*499E
.size tinker, .-tinker
.ident "GCC: (GNU) 3.3"

The resulting mode table, after processing. The part on the left has a ‘X’ if that register is used as
a pointer, the part on the right if the register is used as a scalar.

##
Final Masks (ptr/scal):
0004 . :

0008 .

000c .

##
##
##
##
##
##

C Examples 206

The mode table, describing the registers used as pointers, after compression:

#44 —--Registers used only as scalars
.long O0xf£3f7fbf

—--Registers used only as pointers
.long 0x00000040

#H# --Table columns contain:

##4 Reg/offs: %00
##4 Reg/offs: %0l
Reg/offs: %10
#i4 —--Header completed.
—--Compressed table:
.long 0xcc343709
.long 0x58700370
.long 0xc3707bb7
.long 0x0c000000
H# --Table done.

C Examples 207

C.3 Side-by-side comparison

This example shows a side-by-side comparison between the original GCC 3.3.1 compiler for the
SPARC architecture and the customised compiler. The source file used for the test is appended at
the end of the example. The code on the left is the original one, and the code on the right is the
optimised code with the additional PC maps.

In this example the optimised code generated by the customised compiler is mostly indistin-
guishable from the original code. The additional PC maps appear on the right, immediately after
each compiled routine.

.file "test.c" .file "test.c"
.global _TT_layout_node .global _TT_layout_node
.section ".data" .section ".data"
.align 4 .align 4
.type _TT_layout_node, #object .type _TT_layout_node, #object
.size _TT_layout_node, 12 .size _TT_layout_node, 12
_TT_layout_node: _TT_layout_node:
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.byte 4 .byte 4
.byte 128 .byte 128
.byte 0 .byte 0
.byte 0 .byte 0
.byte 0 .byte 0
.section ".text" .section ".text"
.align 4 .align 4
.global add .global add
.type add, #function .type add, #function
.proc 020 .proc 020
add: add:
! #PROLOGUE# 0 <
save %sp, -112, %sp save %sp, -112, %sp
! #PROLOGUE# 1 <
sethi %hi(_TT_layout_node), %gl sethi %hi(_TT_layout_node), %gl
or %91, %lo(_TT_layout_node), %ol or %91, %lo(_TT_layout_node), %ol
call trackAllok, 0 call trackAllok, 0
mov 12, %o0 mov 12, %00
st %90, [%00] st %90, [%00]
st %90, [%00+4] st %90, [%00+4]
1d [%10], %ol 1d [%$10], %ol
st %11, [%00+8] st %il, [%00+8]
mov %0l, %05 mov %0l, %05
cmp %0l, 0 cmp %0l, 0
bne .LL13 bne .LL13
mov 1, %04 mov 1, %04
b .LL1 b LLL1
st %00, [%i0] st %00, [%10]
LLL13: LLL13:
1d [%05+8], %ol 1d [%05+8], %ol
WLL17: LLL17:
cmp %01, %il cmp %01, %il
bleu,a .LL7 bleu,a .LL7
1d [%05], %gl 1d [%05], %gl
1d [$05+4], %gl 1d [$05+4], %gl
cmp 3g9l, 0 cmp 3g9l, 0
be,a .LL1 be,a .LL1
st %00, [%05+4] st %00, [%05+4]
mov %91, %05 mov %91, %05
LLL4: LLL4:
cmp %04, 0 cmp %04, 0
bne, a .LL17 bne, a .LL17
1d [$05+8], %ol 1d [$05+8], %ol
b,a .LL1 b,a .LL1
LLL7: LLL7:
cmp %91, 0 cmp %gl, 0

bne, a .LL4 bne, a .LL4

C Examples

208

mov %91, %05
st %00, [%05]
b .LL4
mov 0, %04
LLL1:
> nop
ret
restore
.size add, .-add
.global __TT__add_end
__TT__add_end:
.section ".rodata"
.align 4
.type __TT__add_regTable, #object
.size __ TT__add_regTable,_ TT__add_regTable-_ TT__a
.global __ TT__ add_regTable

__TT__add_regTable:
##

--Save and restore offsets for regist

mov %91, %05
st %00, [%05]
b .LL4
mov 0, %04
LLL1:
ret
restore
.size add, .-add
.section .rodata.strl.8,"aMS", Gprogbits, 1
.align 8
LLLCO:
.asciz "% "
.section ".text"
.align 4
.global printTree
.type printTree, #function
.proc 020
printTree:

!#PROLOGUE# 0
save %sp, -112, %sp
! #PROLOGUE# 1

.global __TT__add_regTable_end
__TT__add_regTable_end:

>
>

>

>

>

>

>

>

>

> i or add/sub offsets for stack pointe
> .long 0x00000000

> .long 0x00000090

> Fi# --Start of body and Start of epilogue
> .long 0x00000004

> .long 0x00000088

> --Flags: saveRestoreUsed

> Hi# retIsPtr

> Hi# spMoved

> .long 0xa0000000

> H# --Frame size:

> .long 0x00000070

> ### --Outgoing params area size:

> .long 0x00000060

> d# —-Number of stack slots ever used as
> .long 0x00000000

> #i4 —-Used offsets:

> i --Registers used only as scalars
> .long Oxbf3bff7f

> i --Registers used only as pointers
> .long 0x00000000

> i --Table columns contain:

> ### Reg/offs: %9l

> ### Reg/offs: %00

> ### Reg/offs: %ol

> ### Reg/offs: %05

> ### Reg/offs: %i0

> i --Header completed.

> i --Compressed table:

> .long 0x97035al7

> .long 0x00el93f1

> .long 0x83f0b5cf

> .long 0Ox7daaelfc

> .long 0x12000000

> H# --Table done.

>

>

>

>

orcc %i0, 0, %10

be .LL18

nop

call printTree, 0

1d [$10+4], %00

1d [$10+8], %ol

sethi %hi (.LLCO), %9l
call printf, 0

or %91, %lo(.LLCO), %00
call printTree, 0

1d

[%$10], %00

.section ".text"
.section .rodata.strl.8,"aMS", Gprogbits, 1
.align 8
.LLCO:

.asciz "% "
.section ".text"
.align 4
.global printTree
.type printTree, #function
.proc 020

printTree:

<
save %sp, -112, %sp

| cmp %i0, 0

<
be .LL18
nop
call printTree, 0

| 1d [%10+4], %00

| 1d [$10+8], %ol
sethi %hi (.LLCO), %9l
call printf, 0
or %gl, %lo(.LLCO), %00
call printTree, 0
1d [%10], %00

C Examples

209

LLL18:

printInt:

call trackRelease, 0
restore

nop
ret

restore

.size printTree, .-printTree

.align 4

.global printInt

.type printInt, #function
.proc 020

! #PROLOGUE# 0

! #PROLOGUE# 1

mov %00, %ol
hi(.LLCO), %gl

sethi %
or %91, %lo(.LLCO), %00
or %07, %90, %gl

call printf, 0
5

or gl, %g0, %o7
nop
.size printInt, .-printInt

VVVVYVVVVVVYVVVVVYVVVYVVVYVYVYVYVYVVVVVYVVVVVVYVVVY

v

VVVVVVVVVVVVVVVYVY

##
##

#4#

4
HH#
H4#
H4#
44
4

#
#

#i
#i#
#i
#i#
#i#

##

call
mov

LLL18:

nop
ret
restore
.size

trackRelease, 0
%10, %00

printTree, .-printTree

.global __TT_ printTree_end

__TT__printTree_end:

.section ".rodata"

.align 4

.type __TT__printTree_regTable, fobject

.size __TT__printTree_regTable,__TT_ printTree_regT

.global __TT_ printTree_regTable

.long
.long

.long
.long

.long

.long

.long

.long

.long

.long

__TT_ printTree_regTable:

--Save and restore offsets for regist
or add/sub offsets for stack pointe

--Start of body and Start of epilogue

0x00000000
0x00000040
0x00000004
0x00000038
--Flags: saveRestoreUsed
retIsPtr
spMoved
0xa0000000
--Frame size:
0x00000070

--Outgoing params area size:

0x00000060

--Number of stack slots ever used as

0x00000000
--Used offsets:

--Registers used only as scalars

Oxbffff£7f

--Registers used only as pointers

0x00000080

--Table columns contain:

Reg/offs: %gl

.long

.global __TT_ printTree_regTable_end

--Header completed.

--Compressed table:
0x00c00000

—--Table done.

__TT_ printTree_regTable_end:

.section ".text"
.align 4
.global printInt
.type printInt, #function
.proc 020
printInt:
save %sp, -112, %sp
sethi %hi(.LLCO), %gl
mov %10, %ol
call printf, 0
or %91, %lo(.LLCO), %o0
nop
ret
restore
.size printInt, .-printInt
.global __TT_ printInt_end
__TT__printInt_end:
.section ".rodata"
.align 4
.type _TT_ printInt_regTable, #object
.size __ TT_ printInt_regTable,_TT_ printInt_regTab
.global __ TT_ printInt_regTable
__TT_ printInt_regTable:
HH --Save and restore offsets for regist
Hi# or add/sub offsets for stack pointe
.long 0x00000000
.long 0x0000001c
HH --Start of body and Start of epilogue
.long 0x00000004
.long 0x00000014
4 --Flags: saveRestoreUsed
H4# retIsPtr

C

Examples

210

newNode:

.align 4

.global newNode

.type newNode, #function
.proc 0110

!#PROLOGUE# 0

save %sp, -112, %sp
!#PROLOGUE# 1

sethi %hi(_TT_layout_node), %gl
mov 12, %o0

call trackAllok, 0

or %gl, %lo(_TT_layout_node),
st %10, [%00+8]

st %90, [%00]

st %90, [%00+4]

ret

restore %g0, %00, %00

.size newNode, .-newNode

%ol

44

.long 0xa00000
4

.long 0x000000
#4

.long 0x000000
##

.long 0x000000
##
4

.long Oxbfffff
##

.long 0x000000

spMoved
00
--Frame size:
70
--Outgoing params area size:
60

--Number of stack slots ever used as

00

--Used offsets:

--Registers used only as scalars
ff

--Registers used only as pointers
00

VVV VYV VVVVVVVVYVYVYVVVVVVVYVY

.global __ TT_ printInt_regTable_end
__TT_ printInt_regTable_end:

.section ".text"
.align 4

.global newNode

.type newNode, #function

.proc 0110

--Table columns contain:

Reg/offs: %gl

#H --Header completed.

#H --Compressed table:
.long 0x38000000

#4# --Table done.

newNode:
<
save %sp, -112, %sp
<
sethi %hi(_TT_layout_node), %gl
mov 12, %o0
call trackAllok, 0
or %91, %lo(_TT_layout_node), %ol
st %10, [%00+8]
st %90, [%00]
st %90, [%00+4]
> mov %00, %i0
> nop
ret
| restore
.size newNode, .-newNode
> .global __ TT_ newNode_end
> __TT_ _newNode_end:
> .section ".rodata"
> .align 4
> .type __TT_ newNode_regTable, #object
> .size __TT__newNode_regTable, _ TT_ newNode_regTable
> .global __TT_ newNode_regTable
> __TT__newNode_regTable:
> --Save and restore offsets for regist
> i or add/sub offsets for stack pointe
> .long 0x00000000
> .long 0x0000002c
> ### --Start of body and Start of epilogue
> .long 0x00000004
> .long 0x00000024
> ### --Flags: saveRestoreUsed
> ##4 retIsPtr
> d# spMoved
> .long 0xe0000000
> #i4 ——Frame size:
> .long 0x00000070
> i --Outgoing params area size:
> .long 0x00000060
> —--Number of stack slots ever used as
> .long 0x00000000
> i --Used offsets:
> H# --Registers used only as scalars
> .long Oxbf7£££EE
> fi# --Registers used only as pointers
> .long 0x00000000
> H# --Table columns contain:
> ### Reg/offs: 3%gl
> ### Reg/offs: %00
> Fi# --Header completed.
> i --Compressed table:
> .long 0x38078000
> H# --Table done.
> .global __TT_ newNode_regTable_end

Examples 211

> __TT__newNode_regTable_end:

>
> .section ".text"
.section .rodata.strl.8 .section .rodata.strl.8
.align 8 .align 8
LLLCIL: LLLCIL:
.asciz "Filling the tree (in C!)..." .asciz "Filling the tree (in C!)..."
.align 8 .align 8
LLLC2: LLLC2:
.asciz "Emptying the tree (in C!)..." .asciz "Emptying the tree (in C!)..."
.align 8 .align 8
LLLC3: LLLC3:
.asciz "\n...emptied." .asciz "\n...emptied."
.align 8 .align 8
LLLC4: LLLC4:
.asciz "Filling the tree (in Ada!)..." .asciz "Filling the tree (in Ada!)..."
.align 8 .align 8
LLLC5: LLLC5:
.asciz "Emptying the tree (in Ada!)..." .asciz "Emptying the tree (in Ada!)..."
.section ".text" .section ".text"
.align 4 .align 4
.global trackMain .global trackMain
.type trackMain, #function .type trackMain, #function
.proc 04 .proc 04
trackMain: trackMain:
! #PROLOGUE# 0 <
save %sp, -120, %sp save %sp, -120, %sp
! #PROLOGUE# 1 <
sethi %hi(4096), %00 sethi %hi(4096), %00
mov 0, %13 mov 0, %13
mov %00, %i3 mov %00, %i3
sethi %hi(.LLC1), %16 | sethi $hi(.LLC1), %15
sethi %hi(.LLC2), %17 | sethi $hi(.LLC2), %16
sethi %hi(.LLC3), %i5 | sethi %hi(.LLC3), %17
sethi %hi(.LLC4), %i4 | sethi %hi(.LLC4), %i5
sethi %hi (_TT_layout_node), %12 sethi %hi (_TT_layout_node), %12
sethi %hi(.LLCS), %15 | sethi %hi(.LLCH), %i4
or %00, 903, 314 or %00, 903, 314
or %16, %lo(.LLC1), %00 | or %15, %lo(.LLC1), %00
LLL49: LLL49:
call puts, 0 call puts, 0
mov 0, %i0 mov 0, %i0
st 590, [%fp-20] st %90, [%fp-20]
LLL32: LLL32:
call rand, 0 call rand, 0
add %i0, 1, %i0 add %$i0, 1, %i0
mov %00, %ol mov %00, %ol
call add, 0 call add, 0
add %fp, -20, %00 add %fp, -20, %00
cmp %10, %14 cmp %i0, %14
bleu .LL32 bleu .LL32
nop nop
call puts, 0 call puts, 0
or %17, %$lo(.LLC2), %00 or %16, %lo(.LLC2), %00
1d [$fp-20], %10 1d [$fp-20], %10
cmp %10, 0 cmp %10, 0
be .LL34 be .LL34
nop nop
call printTree, 0 call printTree, 0
1d [$10+4], %00 1d [$10+4], %00
1d [$10+8], %ol 1d [$10+8], %ol
sethi %hi (.LLCO), %9l sethi %hi (.LLCO), %9l
call printf, 0 call printf, 0
or %91, %lo(.LLCO), %o0 or %91, %lo(.LLCO), %o0
call printTree, 0 call printTree, 0
1d [$10], %00 1d [$10], %00
call trackRelease, 0 call trackRelease, 0
mov %10, %o0 mov %10, %00
LLL34: LLL34:
call puts, 0 call puts, 0
or %15, %lo(.LLC3), %00 | or %17, %lo(.LLC3), %00
call puts, 0 call puts, 0
or %i4, %lo(.LLC4), %00 | or %15, %lo(.LLC4), %00
call rand, 0 call rand, 0
st %90, [%fp-20] st %90, [%fp-20]
or %12, %lo(_TT_layout_node), %ol or %12, %lo(_TT_layout_node), %ol
mov %00, %11 mov %00, %11
call trackAllok, 0 call trackAllok, 0
mov 12, %00 mov 12, %00
st %90, [%00] st %90, [%00]
st %90, [%00+4] st %90, [%00+4]

C

Examples

212

LLL41:

ret
restore
.size

%511, [%00+8]
%00, [%fp-20]

N

1, %i0
%13, 903, %11

rand, 0

%i0, 1, %i0

%12, %lo(_TT_layout_node), %ol
%00, %10

trackAllok, 0

12, %o0

%00, %ol
%10, [%00+8]
%90, [%00]

%90, [%00+4]
integral__add, 0
[$fp-20], %00
%10, %11

.LL41

puts, 0

%15, %lo(.LLC5), %00
[$fp-20], %00
integral__scan, 0
%13, 1, %13

puts, 0

%15, %lo(.LLC3), %00
513, 99

.LL49

%16, %$lo(.LLC1), %00
10, %00

putchar, 0

0, %i0

trackMain, .-trackMain

VYV VVVVVVVYVYVVYVYVVVVYVYVVYVYVVVVYVYVVYVVVVYVYVVYVYVVVYVVVYVYV

##
#H#

HH#

44
44
44

44

#4

#

#

#i

#H#

##
##
##
H#
#H#
##
##
##
+#
#
+
#

PR

LLL4L:

st %11, [%00+8]

st %00, [%fp-20]

mov 1, %i0

or %13, 903, sl1

call rand, 0

add %i0, 1, %i0

or %12, %lo(_TT_layout_node), %ol
mov %00, %10

call trackAllok, 0

mov 12, %00

mov %00, %ol

st 310, [%00+8]

st %90, [%00]

st %90, [%00+4]

call integral__add, 0

1d [$fp-20], %00

cmp %10, %11

bleu .LL41

nop

call puts, 0

or %i4, %lo(.LLC5), %00
1d [$fp-20], %00

call integral__scan, 0
add %13, 1, %13

call puts, 0

or %17, %$lo(.LLC3), %00
cmp %13, 99

bleu .LL49

or %15, %$lo(.LLC1l), %00
mov 10, %o0

call putchar, 0

mov 0, %i0

nop

ret

restore

.size trackMain, .-trackMain

.global __TT_ trackMain_end
__TT__trackMain_end:

.section ".rodata"
.align 4
.type __TT_ trackMain_regTable, #object

.size

__TT__ trackMain_regTable,_ TT__ trackMain_regT

.global __TT_ trackMain_regTable
__TT_ trackMain_regTable:

--Save and restore offsets for regist
or add/sub offsets for stack pointe
.long 0x00000000
.long 0x00000154
--Start of body and Start of epilogue
.long 0x00000004
.long 0x0000014c
--Flags: saveRestoreUsed
retIsPtr
spMoved
.long 0xa0000000
--Frame size:
.long 0x00000078
--Outgoing params area size:
.long 0x00000060
--Number of stack slots ever used as
.long 0x00000001
--Used offsets:
.long 0x00000064
--Registers used only as scalars
.long 0xbf3f58f3
--Registers used only as pointers
.long 0x00000000
.long 0x00000000
--Table columns contain:
Reg/offs: %gl
Reg/offs: %00
Reg/offs: %ol
Reg/offs: %10
Reg/offs: %12
Reg/offs: %15
Reg/offs: %16
Reg/offs: %17
Reg/offs: %i4
Reg/offs: %i5
Reg/offs: 100

C

Examples

213

.ident "GCC: (GNU) 3.3.1"

4 —-Header completed.
4 ——Compressed table:

.long 0xf0b37183

.long 0x70c5e107

.long 0xc00dc557

.long 0x041cedc3

.long 0xd8271567

.long 0xd00e8300

.long 0x682001a0

.long 0x70167bcO

.long 0x19ff03e0

.long 0x5c2385£0

.long 0x00000000
--Table done.

.global __TT__ trackMain_regTable_end
__TT_ trackMain_regTable_end:

.section ".text"
.ident "GCC: (GNU) 3.3.1"

The following is the source file from which the above assembly code was generated.

// $RCSfile: test.c,v $

// $Author: toni $
// $Revision: 1.1 $
// $Date: 2003/04/10 23:39:22 $

#include "alpha.h"
// last, range, offs
1Entry _TT_layout_node[]={{0,0,0},{0,0,4},{1,0,0}};

void add(node **tree,uint32 x)
{
node *n=trackAlloc(node);
n->data=x;
n->r=NULL;
n->1=NULL;

if (!*tree) {
*tree=n;

} else {

node *target=*tree;
uint32 workLeft=1;

while (workLeft) ({

if (target->data > x)
if (target->1)
target=target->1;
else {
target->1=n;
workLeft=0;

}

} else {

if (target->r)
target=target->r;
else {
target->r=n;
workLeft=0;

void printTree(node *n)
{
if (n) |
printTree(n->1);
printf("%d ",n->data);
printTree(n->r);

Examples

214

trackRelease(n);

}

//---- Ada interface
void printInt (int i)

printf("%d ",i);

node *newNode (uint32 x)

node *n=trackAlloc (node);
n->data=x;
n->r=NULL;
n->1=NULL;
return n;

/===
trackMain ()

node *root;
uint32 1i,3;
for (3=0;3<100;j++) {

printf ("Filling the tree (in C!)...\n");
root=NULL;
for (1=0;i<5000;i++)

add (&root, (uint32)rand());
printf ("Emptying the tree (in C!)...\n");
printTree (root);
printf ("\n...emptied.\n");

printf("Filling the tree (in Ada!)...\n");

root=NULL;

root=newNode ((uint32) rand());

for (1=1;1<5000;i++)
integral__add(root,newNode ((uint32)rand()));

printf ("Emptying the tree (in Ada!)...\n");

integral__scan(root);

printf("\n...emptied.\n");

}
printf("\n");
return 0;

C Examples

215

C.4 Tables from multiple languages

C4.1 Java

public class Tree {

Tree r,1;
int data;

public static void add(Tree root,Tree in)

{
boolean workLeft=true;
Tree target=root;
int x=in.data;

while (workLeft) {
if (target.data > x) {
if (target.l!=null)
target=target.l;
else {
target.l=in;
workLeft=false;
}

} else {

if (target.r!=null)
target=target.r;
else {
target.r=in;
workLeft=~false;
}

}

}

.global _ TT__ ZN4Tree3addEPS_SO__regTable

_TT ZN4Tree3addEPS_SO__regTable:

4 --Save and restore offsets for register window shift
4 or add/sub offsets for stack pointer adjustment
.long 0x00000000
.long 0x0000006c
(333 —--Start of body and Start of epilogue offsets
.long 0x00000004
.long 0x00000064
(333 --Flags: saveRestoreUsed
H# retIsPtr
$44 spMoved
.long 0xa0000000
—-Frame size:
.long 0x00000070
--Outgoing params area size:
.long 0x00000060
#4 —-Number of stack slots ever used as ptrs:
.long 0x00000000
H --Used offsets:
#i# --Registers used only as scalars
.long OxbfEffE3f
(i --Registers used only as pointers
.long 0x00000040
H# --Table columns contain:
Reg/offs: %gl
Reg/offs: %10
H# —--Header completed.
4 —-—Compressed table:
.long 0x30038e7f
.long 0x££7d8000
-- Table done.
44 -- 49 bits used in compressed table
(333 - plus two times 32 bits used in the header
HH# -- 768 bits for the full table.
(333 - compression squeezed down to: 14.7135% of original
(333 - and 6.38021% excluding the header.
(333 -- Compressed table (excluding header), represented
44 - using whole 32-bit words, was
4 — 8.33333% of the size of the code in the body,
#44 - but only 6.38021% counting the bits really used.

.global __TT___ ZN4Tree3addEPS_SO0__regTable_end
__TT___7ZN4Tree3addEPS_S0__regTable_end:

##
Final Masks (ptr/scal):

C Examples

216

C.4.2 Clanguage

int pip(int a,int ta,int tb,int tc,int td,int te,int tf,int tg,int th,int ti,
int tj,int tk,int tl,int tm,int tn,int to,int tp,int tq,int tr,
int ts,int tt,int tu,int tv,int tw,int tx,int ty,int tz)

int b=a>>1;

int c=a>>(atb);

int d=a>>((b>>c));

int e=a>>((b>>d)+(c>>d));

int f=a>>((b>>e)+(c>>e)+(d>>e));

int g=a>>((b>>f)+(c>>f)+(d>>f)+(e>>f));

int h=a>>((b>>g)+(c>>qg)t(d>>g)+(e>>q)+(f>>q));

int i=a>>((b>>h)+(c>>h)+(d>>h)+(e>>h)+(£>>h)+(g>>h));

int j=a>> ((b>>1i)+(c>>i)+(d>>1)+(e>>1)+(£>>1)+(g>>1)+(h>>1));

int k=a>>((b>>3)+(c>>3)+(d>>F)+(e>>F)+(£>>7) +(g>>]) +(h>>]) +(i>>7F));

int 1=a>>((b>>k)+(c>>k)+(d>>k)+(e>>k) + (£>>k) + (g>>k) + (h>>k) + (i>>k) + (> >k)) ;

int m=a>>((b>>1)+(c>>1)+(d>>1)+(e>>1)+(£>>1)+(g>>1)+(h>>1)+(i>>1)+(3>>1)+(k>>1));

int n=a>>((b>>m)+(c>>m)+(d>>m)+(e>>m) + (£>>m) + (g>>m) + (h>>m) + (1> >m) + (3> >m) + (k>>m) + (1>>m)) ;

int o=a>>((b>>n)+(c>>n)+(d>>n)+(e>>n)+(£>>n)+(g>>n)+(h>>n)+(i>>n)+(3>>n)+(k>>n)+(1>>n)+(m>>n));

int p=a>>((b>>0)+(c>>0)+(d>>0)+(e>>0)+(£>>0)+(g>>0)+ (h>>0)+(i>>0)+(J>>0) + (k>>0) +(1>>0) + (m>>0) + (n>>0)) ;

int g=a>>((b>>p)+(c>>p)+(d>>p)+(e>>p)+(£>>p)+(g>>p)+(h>>p)+(i>>p)+(J>>p)+(k>>p)+(1>>p) + (m>>p) + (n>>p) + (0> >p)) ;

int r=a>>((b>>q)+(c>>q)+(d>>q)+(e>>q)+(£>>q) +(g>>q) + (h>>q) + (1> >q) +(I>>q) + (k>>q) + (1> >q) + (m>>q) + (n>>q) + (0> >q) +(p>>q)) ;

int s=a>>((b>>r)+(c>>r)+(d>>r)+(e>>r) + (£>>r)+(g>>r) + (h>>r) + (1> >1) + (3> >1) + (k>>1) + (1> >1r) + (m>>r) + (n>>r) + (0> >r) + (p> >r) + (g> >1r))

int t=a>>((b>>s)+(c>>s)+(d>>s)+(e>>s)+(£>>s)+(g>>s)+(h>>s)+(1>>s)+(3>>s5) + (k>>s)+(1>>s) + (m>>s) +(n>>s) + (0> >s) + (p>>s) + (g> >s5) +
(r>>s));

int u=a>>((b>>t)+(c>>t)+(d>>t) +(e>>t) + (£>>8) +(g>>t) + (h>>t) + (1> >8) + (> >E) + (k> >t) + (1> >t) + (m> >t) + (n>>t) + (0> >t) + (p>>t) + (g> >t) +
(r>>t) +(s>>t));

int v=a>>((b>>u)+(c>>u)+(d>>u)+(e>>u) + (£>>u) + (g>>u) + (h>>u) + (1> >u) + (3> >u) + (k> >u) + (1> >u) + (m> >u) + (n>>u) + (0> >u) + (p> >u) + (g> >u) +
(r>>u)+(s>>u)+(t>>u));

int w=a>>((b>>v)+(c>>v)+(d>>v) +(e>>v) + (£>>v) + (g> >v) + (h> >v) + (1> >v) + (> >v) + (k> >v) + (1> >v) + (m> >v) + (n> >V) + (0> >v) + (p> >v) + (g> >v) +
(r>>v)+(s>>v) +(t>>v) +(u>>v));

int x=a>>((b>>w)+(c>>w)+(d>>w) + (e>>w) + (£>>w) + (g>>w) + (h> >w) + (1> >w) + (> >w) + (k> >w) + (1> >w) + (m> >w) + (n> >w) + (0> >w) + (p> >w) + (> >w) +
(r>>w) + (8> >w) + (£> >w) + (u> >w) + (v>>w)) ;

int y=a>>((b>>x)+(c>>x)+(d>>x)+(e>>x) + (£>>x) + (g> >x) + (h> >x) + (1> >x) + (> >x) + (k> >x) + (1> >x) + (m> >x) + (n> >X) + (0> >x) + (p> >X) + (> >x) +
(r>>x)+(s>>x) + (t>>x) + (u>>x) + (v>>x) + (w>>x)) ;

int z=a>>((b>>y)+(c>>y)+(d>>y) +(e>>y) +(£>>y) +(g>>y) + (h>>y) + (1> >y) + (3> >y) + (k> >y) + (1> >y) + (m> >y) + (n> >y) + (0> >y) + (p> >y) + (g> >y) +
(r>>y) +(s>>y) +(E>>y) + (u>>y) + (v>>y) + (w>>y) + (x> >y))

return zttattbt+tcttd+tettf+tgtth+tittj+tk+tl+tmttnttottpttgttritsttt+tuttvitwrtx+tyttz;

.global __TT__pip_regTable
__TT__pip_regTable:
(333 —-Save and restore offsets for register window shift
44 or add/sub offsets for stack pointer adjustment
.long 0x00000000
.long 0x00000c64
#44 --Start of body and Start of epilogue offsets
.long 0x00000004
.long 0x00000c5¢

C Examples 217

(333 --Flags: saveRestoreUsed
HH retIsPtr
(333 spMoved
.long 0xa0000000
H4 —--Frame size:
.long 0x00000098
#44 --Outgoing params area size:
.long 0x00000060
#4 —-Number of stack slots ever used as ptrs:
.long 0x00000000
H --Used offsets:
#i4 --Registers used only as scalars
.long OxfEEfEFEE
#i4 --Registers used only as pointers
.long 0x00000000
H --Table columns contain:
[di --Header completed.
(i --Compressed table:
H# -- Table done.
H# -- 0 bits used in compressed table
H# - plus two times 32 bits used in the header
H# -= 25280 bits for the full table.
H# -- compression squeezed down to: 0.253165% of original
H# - and 0% excluding the header.
H# -- Compressed table (excluding header), represented
¥ - using whole 32-bit words, was
#HE - % of the size of the code in the body,
4 but only 0% counting the bits really used.

.global __TT__pip_regTable_end
__TT__pip_regTable_end:

#4 Final Masks (ptr/scal):
0004 .. : I XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
T XXXXXX. .
T XXXXXX. .
T XXXXXX. .
T XXXXXX. .
T XXXXXX. .
T XXXXXX. .
T XXXXXX. .
1 XXXXXX. .
1 XXXXXX. .
1 XXXXXX. .
: XXXXXX. .
: XXXXXX. .
: XXXXXX. .
1 XXXXXX. .
1 XXXXXX. .
: XXXXXX. .
: XXXXXX. .
t XXXXXX. .

S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
I XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
I XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
S XXXXXX. .
XXXXXX. .
T XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .

C

Examples

218

: XXXXXXXX:
$ XXXXXXXX:
: XXXXXXXX:
$ XXXXXXXX:
: XXXXXXXX:
: XXXXXXXX:
: XXXXXXXX 3
: XXXXXXXX 2
: XXXXXXXX 2
: XXXXXXXX 2
: XXXXXXXX:
: XXXXXXXX:
: XXXXXXXX:
:XXXXXXX. @
[:0:0:0:0.0:

t XXXXXX. .
t XXXXXX. .
tXXXXXX. .
$ XXXXXX. .

XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
XXXXXX. .
: XXXXXX. .
t XXXXXX. .
t XXXXXX. .
: XXXXXX. .
tXXXXXX. .
: XXXXXX. .
t XXXXXX. .
t XXXXXX. .
t XXXXXX. .
$ XXXXXX. .
$ XXXXXX. .

C Examples 219

C.4.3 C using mostly pointers

int many_pointer_params(int *a,int *b,int *c,int *d,int *e,int *f,int *g,int *h,int *i

int *j,int *k,int *1,int *m,int *n,int *o,int *p,int *q,int *r
int *s,int *t,int *u,int *v,int *w,int *x,int *y,int *z

return *at+*bt*ct*dtretrf+xgrrh¥i+* JHxk+*I+¥mi¥nt o+ prrg¥rtrstxttrut virut i y+rz;

#H#
##

#H#

##
##
H#

i

HH

HH

HH

H

#H

##
##
H#
H#
H
H
H
H
H
H
H
##
##
#
##
#
##
##
#
#
#
HH#
H
HH
HH#
H4
H4

.global _ TT_ many_pointer_params_regTable
__TT__many_pointer_params_regTable:

.long
.long

.long
.long

.long
.long
.long
.long

.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long
.long

.long

.long
.long

Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:
Reg/offs:

236
240
244
248
252
256
260
264
268
272
276
280
284
288
292
296
300

--Save and restore offsets for register window shift
or add/sub offsets for stack pointer adjustment

0x00000000
0x00000150

--Start of body and Start of epilogue offsets
0x00000004
0x00000148

--Flags: saveRestoreUsed

retIsPtr
spMoved

0xa0000000

—-Frame size:
0x00000088

--Outgoing params area size:
0x00000060

—-Number of stack slots ever used as ptrs:
0x00000014

—--Used offsets:
0x000000e4
0x000000e8
0x000000ec
0x000000£0
0x000000£4
0x000000£8
0x000000fc
0x00000100
0x00000104
0x00000108
0x0000010¢
0x00000110
0x00000114
0x00000118
0x0000011c
0x00000120
0x00000124
0x00000128
0x0000012¢
0x00000130

--Registers used only as scalars
0xbfff££03

--Registers used only as pointers
0x00000000
0x00000000

—--Table columns contain:

C Examples 220

##4 Reg/offs: 304

(333 --Header completed.

(333 —-Compressed table:
.long 0xf055£d07
.long Oxdclefc2b
.long 0x93f0bd01
.long 0x1£fc07784
.long 0x7fc3edcO
.long 0x97fclf78
.long 0x3bf0Oc3bf
.long 0x01dfd07d
.long OxcOefc2d?
.long Oxfc3f60df
.long 0x90fb70e3
.long 0xab860018
.long 0x006006fc
.long 0x28edc838
.long 0x0fleellc
.long 0x6d8171e6
.long 0x15c6985f
.long 0x19e07c77
.long 0x86f18e29
.long 0xc5587718
.long 0x62dc518b
.long 0xfl3elfc5
.long 0xf8cfl2ed
.long 0x1c3d8d71
.long 0x2645c399
.long 0x1f0de37c
.long 0x4792£f0c8

HH —-- Table done.

(333 -- 86l bits used in compressed table

$44 - plus two times 52 bits used in the header

-— 4212 bits for the full table.

#44 - compression squeezed down to: 22.9107% of original
#4 - and 20.4416% excluding the header.

#44 -- Compressed table (excluding header), represented
(i1 - using whole 32-bit words, was

44 - 33.3333% of the size of the code in the body,

(i - but only 33.2176% counting the bits really used.

.global __TT__many_pointer_params_regTable_end
__TT__many_pointer_params_regTable_end:
Final Masks (ptr/scal):

: : et H 1 XXXX

LXXXX. Lt XXXXXXXX : XXXXXXXK : XXXX
L XXX Lt XXXXXXXX : XXXXXXXX : XXXX
: XXXXXXXX : XXXXXXXK : XXXX ...
XXt XXXXXXXX XXXXXXXX : XXXX
XXX L XXXXXXX XXXXXXXX : XXXX
XKLL XXXKXXK XXXXXXXX XXXK .
: L XXXXXXXX : XXXX .

L XXXXXXXX : XXXX .
L XXXXXXXX : XXXX .
tXXXXXXXX : XXXX .
tXXXXXXXX : XXXX .
tXXXXXXXX : XXXX .
S XXXXXXXX: XXXX .
S XXXXXXXX: XXXX .
: XXXXXXXX 1 XXXX
: XXXXXXXX : XXXX
: XXXXXXXX : XXXX
S XXXXXXXX:XXXX ...
L XXXXXXXX : XXXX
L XXXXXXXX : XXXX
: XXXXXXXX 1 XXXX
: XXXXXXXX : XXXX
[9:0:0:0:0:0.65:0.0:0 QRN

B e b e b ¢ < -

L XXXX:
1L XL XXXXX .
1L XXXXXXX: .

.t XXXXXXXX: .
.t XXXXXXXX:
.t XXXXXXXX: .
.t XXXXXXXX: .

1 XXXXXX. .

C

Examples

221

: XXXXXX

: XXXXXX

: XXXXXX

C.4.4 Ada

procedure add(tree:in Packl_Ptr;n:in Packl_Ptr) is

target: Packl_Ptr;
workLeft: Boolean;
x:Int;

begin
workLeft :=true;
x:=n.all.data;
target:=tree;

while workLeft loop

if target.all.data > x then
if target.all.l /= null then
target:=target.all.l;
else
target.all.l:=n;
workLeft:=false;
end if;

else
if target.all.r /= null then
target:=target.all.r;
else
target.all.r:=n;
workLeft:=false;
end 1if;

end if;

end loop;

end add;

WXt XXXXXX
KXo D XXXXXX.

: XXXXXX.
: XXXXXX.

: XXXXXX.
: XXXXXX.

: XXXXXX.

:XXXXXXXX:
.t XXXXXXXX:
.t XXXXXXXX:
Lt XXXXXXXX:
.t XXXXXXXX:

. 1 XXXXXXXX: .
. 1 XXXXXXXX: .
. 1 XXXXXXXX: .
. 1 XXXXXXXX: .

1 XXXXXXXX: .

XXXXXXXX: .

):0:0:0:0:0:0:0:¢
):0:0:0:0:0:0:0:¢§
):0:0:0:6:0:0:0:¢
):0:0:0:0:0:0:0:¢
):0:0:0:0:0:0:0:¢
:0:0:0:0:0:0:0:¢
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXXX:
XXXKXXX. @
XXXXXX. . ¢

XXXXX. .. e ..
D010:0.0.6. QU B T
D00:0. 0. G T
XXXXXX. .
XXXXX. ..
XXXXXX. .
XXXXX.
XXXXXX. .
XXXXX. ..
XXXXX.
L XXXXX. .

C

Examples

222

.global __TT__integral__add_regTable
__TT__integral__add_regTable:
(333 --Save and restore offsets for register window shift
(333 or add/sub offsets for stack pointer adjustment
.long 0x00000000
.long 0x00000000
#44 --Start of body and Start of epilogue offsets
.long 0x00000000
.long 0x00000054

#4 --Flags: saveRestoreUsed

H retIsPtr

#4 spMoved
.long 0x00000000

H —-Frame size:
.long 0x00000000

(i --Outgoing params area size:
.long 0x00000000

(i —-Number of stack slots ever used as ptrs:
.long 0x00000000

--Used offsets:

H# --Registers used only as scalars
.long Oxbf3fffff

H# --Registers used only as pointers
.long 0x00400000

4 --Table columns contain:

Reg/offs: %gl
Reg/offs: %00
4 —--Header completed.
(333 —--Compressed table:
.long 0x00e383fe
.long 0xfbe00000

H4 -- Table done.

44 -- 43 bits used in compressed table

44 - plus two times 32 bits used in the header

#4 -- 672 bits for the full table.

#4 - compression squeezed down to: 15.9226% of original
#44 - and 6.39881% excluding the header.

#4 -- Compressed table (excluding header), represented
#i4 - using whole 32-bit words, was

44 - 9.52381% of the size of the code in the body,

(4 - but only 6.39881% counting the bits really used.

.global __ TT_ integral__add_regTable_end
__TT__integral__add_regTable_end:

##
Final Masks (ptr/scal):
0000 XX B

C.4.5 Pascal

procedure pascalAdd(root,n:nodeptr);
var

target: nodeptr;

workLeft: boolean;

x: integer;

begin
workLeft:=true;

Examples

223

x:=n".data;
target:=root;

printInt(x);

while workLeft do begin

if target”.data > x then begin
if not (target”.l = nil) then
target:=target”.l
else begin
target”.l:=n;
workLeft:=false
end

end else begin
if not (target”.r = nil) then
target:=target”.r
else begin
target”.r:
workLeft:=false

n;

.global __TT_ Pascaladd_regTable
__TT__Pascaladd_regTable:
4 --Save and restore offsets for register window shift
4 or add/sub offsets for stack pointer adjustment
.long 0x00000000
.long 0x00000068
(333 —--Start of body and Start of epilogue offsets
.long 0x00000004
.long 0x00000060

$44 --Flags: saveRestoreUsed

retIsPtr

#44 spMoved
.long 0xa0000000

H# —-Frame size:
.long 0x00000070

#4 --Outgoing params area size:
.long 0x00000060

(4 —-Number of stack slots ever used as ptrs:
.long 0x00000000

H --Used offsets:

(i --Registers used only as scalars
.long OxbfEfff3f

--Registers used only as pointers
.long 0x00000040

H# --Table columns contain:

Reg/offs: %gl
Reg/offs: %10
H# —--Header completed.
H# —-—Compressed table:
.long 0x00071cff
.long 0x£fdf60000

#t -- Table done.

(333 -- 47 bits used in compressed table

(333 - plus two times 32 bits used in the header

H -- 736 bits for the full table.

(333 - compression squeezed down to: 15.0815% of original
44 - and 6.38587% excluding the header.

#44 - Compressed table (excluding header), represented
(233 — using whole 32-bit words, was

44 — 8.69565% of the size of the code in the body,

#44 - but only 6.38587% counting the bits really used.

.global __TT_ Pascaladd_regTable_end
__TT__Pascaladd_regTable_end:

Final Masks (ptr/scal):

C

Examples

224

C.4.6 C using various expressions

void rather_complex_test (int a,int *b)

{

char *c=some_char (), *d=some_char();
int ol=a,02=a-3,03=atol;

int *pol=some_int();

type_a *tal=some_a();

type_b *ta2=some_b();

ol=1;
do
{

int i,3=0;

for (i=ping(b);i<ping(poing(j));i++) {
peng (atping (pang(a,b)));
while (pong(poing(a),pong(b,1))) {
if (§<91) {
ta2->cc=1+(* (tal->cp=some_char()));
peng(a-1);
03=-19;
j=pong (b, a+2) ? a*ping(b) : 0;
} else {
j=ping (pang(j,b));
break;
}
}
}
fun2(ol,02,03,02,0l,ping (poing(02)),143);
while (pong(poing(a),pong(b,1))) {

if (3<91) |

peng (a-ta2->u2);

} else {

j=ping (pang (i, b));
break;

}
tal=funl (02-8,ta2, *c, *pol,b);
}
} while (some_b()!=fun3(some_int (), *pol+ping(pang(3,tal->p)),
pol,tal,some_b(),d));

.global _ TT_ rather_complex_test_regTable
TT__rather_complex_test_regTable:

i --Save and restore offsets for register window shift
H# or add/sub offsets for stack pointer adjustment

.long 0x00000000
.long 0x0000022c

H# --Start of body and Start of epilogue offsets

.long 0x00000004
.long 0x00000224

4 --Flags: saveRestoreUsed

retIsPtr

44 spMoved
.long 0xa0000000

i --Frame size:
.long 0x00000078

(333 --Outgoing params area size:
.long 0x00000068

44 —-Number of stack slots ever used as ptrs:
.long 0x00000000

H4 --Used offsets:

#44 —-Registers used only as scalars

.long 0xff0706b3

--Registers used only as pointers

C Examples 225

.long 0x00000040

HH --Table columns contain:
##4 Reg/offs: %00
##4 Reg/offs: %ol
##4 Reg/offs: %02
##4 Reg/offs: %03
##4 Reg/offs: %04
##4 Reg/offs: %10
##4 Reg/offs: %11
##4 Reg/offs: %12
##4 Reg/offs: %13
##4 Reg/offs: %14

##4 Reg/offs:
Reg/offs:

it
=}

o0 o o
p
s

##% Reg/offs: %i5
(i --Header completed.
(i --Compressed table:

.long Oxc4£7b460
.long 0x607c04dc
.long 0x10c07c02
.long 0Oxdcll665e
.long 0x70cbf07b
.long 0x70e370e5
.long 0x9903£433
.long 0xa73d373c
.long 0x3b70cbb?
.long 0x67605ca8
.long 0Oxedclb847
.long 0x026e7c03
.long 0xa7700e24
.long 0x001bb403
.long 0xbb86£800

H4 -- Table done.

44 -= 471 bits used in compressed table

#44 - plus two times 32 bits used in the header

-— 4352 bits for the full table.

#44 -- compression squeezed down to: 12.2932% of original
#4 - and 10.8226% excluding the header.

-- Compressed table (excluding header), represented
#4 - using whole 32-bit words, was

4 - 11.0294% of the size of the code in the body,

(i - but only 10.8226% counting the bits really used.

.global __ TT_ rather_complex_test_regTable_end
__TT__rather_complex_test_regTable_end:

Final Masks (ptr/scal):
0004 :

>

X
X
JX:
X
X
X
X
X
X
X
WX
X
X
WX
X
X
X:
X
¢
X
LXK
LXK
Xt
Xt

C

Examples

226

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

C

Examples

227

C4.7 C++

class hello {
public:
int a;
int b;
hello *h;
virtual void something();
void somethingElse (hello*);
Vi

main()

{
hello hl,h2;
hl.something();
h2.somethingElse (&hl);
somethingExternal (&h2);

.global __TT__main_regTable
__TT__main_regTable:

H# --Save and restore offsets for

Se Be Be e e e e e e e e e e e e e e e e b e B b B B B B B A B B B B B B B B B B B B B B BC B< B< B< B< B< B< b< b< b< <

o o oo ok ok ok ok

IR

e B¢ ba e B¢ ba B¢ be b B ba b B b

register window shift

or add/sub offsets for stack pointer adjustment

C

228

Examples
.long 0x00000000
.long 0x00000054
(333 —--Start of body and Start of epilogue offsets
.long 0x00000004
.long 0x0000004c
44 --Flags: saveRestoreUsed
H4 retIsPtr
#44 spMoved
.long 0xa0000000
H —-Frame size:
.long 0x00000090
#4 --Outgoing params area size:
.long 0x00000060
(i —-Number of stack slots ever used as ptrs:
.long 0x00000000
H --Used offsets:
(i --Registers used only as scalars
.long Oxff67ffff
4 --Registers used only as pointers
.long 0x00000000
.long 0x00000000
H# --Table columns contain:
Reg/offs: %00
Reg/offs: %03
Reg/offs: %04
4 --Header completed.
4 —--Compressed table:
.long 0x03e3e300
.long 0x01££8000
i —-- Table done.
(333 -- 55 bits used in compressed table
44 - plus two times 36 bits used in the header
-- 648 bits for the full table.
44 - compression squeezed down to: 19.5988% of original
#44 - and 8.48765% excluding the header.
#4 - Compressed table (excluding header), represented
#44 - using whole 32-bit words, was
(i1 - 11.1111% of the size of the code in the body,
#i4 - but only 9.54861% counting the bits really used.

.global __TT_ main_regTable_end

__TT__main_regTable_end:

Final Masks (ptr/scal):

“Etaoin Shrdlu”

Bibliography

[AAB *00]

[ABO1]

[ABC*83]

[ABN99]

[ABNPO1]

[ACL*99]

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Coc-
chi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio virtual ma-
chine. IBM Systems JournaB9(1):211-238, 2000,ttp: //www.research.ibm.
com/journal/sj/391/alpern.html.

G. Antoniu and L. Boug. DSM-PM2: A portable implementation platform for
multithreaded DSM consistency protocols. Pnoc. 6th International Workshop
on High-Level Parallel Programming Models and Supportive Environments (HIPS
'01), San Francisco, April 200http://www.inria.fr/rrrt/rr-4108.html.

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morrison.
An approach to persistent programmir@mputer Journal26(4):360-365, 1983,
http://www.dcs.st-and.ac.uk/research/publications/ABC+83a.php.

Gabriel Antoniu, Luc Bouge, and Raymond Namyst. An efficient and transparent
thread migration scheme in the PM2 runtime system. Technical Report RR-3610,
Inria, Institut National de Recherche en Informatique et en Automatique, January
1999,http://www.inria.fr/rrrt/rr-3610.html.

Gabriel Antoniu, Luc Bougé, Raymond Namyst, and Christian Pérez. Com-
piling data-parallel programs to A distributed runtime environment with thread
isomigration. Parallel Processing Letters10(2-3):201-214, June 200kitp:
//perso.ens—1lyon.fr/alain.darte/cpc2000/antoniu.html. Special issue
on Compilers for Parallel Computers (CPC 2000).

Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen, and Vivek Sarkar.
Jalapefio — a compiler-supported Java virtual machine for se¥€fd. SIGPLAN
1999 Workshop on Compiler Support for System Software (WCSSE&P1999,

http://www.research.ibm.com/jalapeno/publication.html.

229

http://www.research.ibm.com/journal/sj/391/alpern.html
http://www.research.ibm.com/journal/sj/391/alpern.html
http://www.inria.fr/rrrt/rr-4108.html
http://www.dcs.st-and.ac.uk/research/publications/ABC+83a.php
http://www.inria.fr/rrrt/rr-3610.html
http://perso.ens-lyon.fr/alain.darte/cpc2000/antoniu.html
http://perso.ens-lyon.fr/alain.darte/cpc2000/antoniu.html
http://www.research.ibm.com/jalapeno/publication.html

Bibliography 230

[AD97]

[ADH+00]

[ADMO8]

[AEL8S]

[AG9S]

[Age98]

[AJ99]

[AM92]

[AMO5]

[AMB95]

Ole Agesen and David Detlefs. Finding references in Java stacks. In Peter Dick-
man and Paul R. Wilson, editorOPSLA '97 Workshop on Garbage Collec-
tion and Memory Managemer®ctober 1997ftp://ftp.dcs.gla.ac.uk/pub/
drastic/gc/detlefs.ps.

Gerald Aigner, Amer Diwan, David L. Heine, Monica S. Lam, David L. Moore,
Brian R. Murphy, and Constantine Sapuntzakis. An overview of the SUIF2 com-
piler infrastructure, 200Qyttp://suif.stanford.edu.

Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage collection and local
variable type-precision and liveness in Java virtual machineBrdoeedings of the
ACM SIGPLAN’'98 Conference on Programming Language Design and Implemen-
tation (PLDI), pages 269-279, Montreal, Canada, 17-19 June 1998.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent collection on
stock multiprocessorsACM SIGPLAN Notice®23(7):11-20, 1988,ttp://doi.
acm.org/10.1145/989393.989417.

Alexander Aiken and David Gay. Memory management with explicit regions.
In Proceedings of SIGPLAN’'98 Conference on Programming Languages Design
and ImplementationACM SIGPLAN Notices, Montreal, June 1998. ACM Press,
http://doi.acm.org/10.1145/277650.277748.

Ole Agesen. GC points in a threaded environment. Technical Report SMLI-TR-
98-70, Sun Microsystems Laboratories, December 1898;://research.sun.
com/techrep/1998/abstract-70.html.

Malcolm P. Atkinson and Mick J. Jordan. Issues raised by three years of devel-
oping PJama: An orthogonally persistent platform for Java. In Catriel Beeri and
Peter Buneman, editorBatabase Theory - ICDT '99, 7th International Confer-
ence, Jerusalem, Israel, January 10-12, 1999, Proceediugisme 1540 of.ecture
Notes in Computer Sciengeages 1-30. Springer, 199@tp://link.springer.
de/link/service/series/0558/bibs/1540/15400001.htm.

A. Albano and R. Morrison, editorsPersistent Object Systems: Implementation
and Use (Proceedings of the Fifth International Workshop on Persistent Object
Systems)Workshops in Computing, San Miniato, Italy, September 1992. Springer-
Verlag.

M. P. Atkinson and R. Morrison. Orthogonally persistent object systems.
VLDB Journa) 4(3):319-401, 1995http://www.dcs.st-and.ac.uk/rsch/
publications/AM95.shtml.

Malcolm P. Atkinson, David Maier, and Véronigue Benzaken, edit®arsistent
Object Systems, Proceedings of the Sixth International Workshop on Persistent Ob-
ject Systems, Tarascon, Provence, France, 5-9 Septembend®adshops in Com-
puting. Springer and British Computer Society, 1995.

ftp://ftp.dcs.gla.ac.uk/pub/drastic/gc/detlefs.ps
ftp://ftp.dcs.gla.ac.uk/pub/drastic/gc/detlefs.ps
http://suif.stanford.edu
http://doi.acm.org/10.1145/989393.989417
http://doi.acm.org/10.1145/989393.989417
http://doi.acm.org/10.1145/277650.277748
http://research.sun.com/techrep/1998/abstract-70.html
http://research.sun.com/techrep/1998/abstract-70.html
http://link.springer.de/link/service/series/0558/bibs/1540/15400001.htm
http://link.springer.de/link/service/series/0558/bibs/1540/15400001.htm
http://www.dcs.st-and.ac.uk/rsch/publications/AM95.shtml
http://www.dcs.st-and.ac.uk/rsch/publications/AM95.shtml

Bibliography 231

[AP99]

[App89]

[Arm98]

[ASUSE]

[Bar88]

[BB]

[BC92]

[BC99]

[BCF+99]

[BD9Y4]

Gabriel Antoniu and Christian Perez. Using preemptive thread migration to
load-balance data-parallel applications. Research Report RR1999-45, LIP, ENS
Lyon, France, September 1998,p://ftp.ens-1lyon. fr/pub/LIP/Rapports/
RR/RR1999/RR1999-45.ps. 7.

Andrew W. Appel. Simple generational garbage collection and fast alloc&ft.
ware Practice and Experienc&9(2):171-183, February 1988;tp://www.cs.
princeton.edu/faculty/appel/papers/143.ps.

E. Armstrong. Cover story: HotSpot: A new breed of virtual machidava-
World: IDG’s magazine for the Java communi8(3), March 1998http: //www.
javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.htm.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UllmarCompilers — Principles, Tech-
niques, and ToolsAddison-Wesley, 1986.

Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Tech-
nical Report 88/2, DEC Western Research Laboratory, Palo Alto, CA, February
1988,http://www.research.digital.com/wrl/techreports/88.2.ps. Also

in Lisp Pointers 1, 6 (April-June 1988), 2—-12.

Joshua Bloch and Gilad Bracha. JSR 201: Extending the Java programming
language with enumerations, autoboxing, enhanced for loops and static import,
http://jcp.org/en/jsr/detail?id=201.

Hans-Juergen Boehm and David R. Chase. A proposal for garbage-collector-safe
C compilation. Journal of C Language Translatiopages 126141, 1992{ tp:
//reality.sgi.com/employees/boehm_mti/papers/boecha.ps.qgz

Guy E. Blelloch and Perry Cheng. On bounding time and space for multiproces-
sor garbage collection. IRroceedings of SIGPLAN'99 Conference on Program-
ming Languages Design and Implementatia@M SIGPLAN Notices, pages 104—
117, Atlanta, May 1999. ACM Presgftp://doi.acm.org/10.1145/301618.
301648.

Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, Vugranam C. Sreedhar, Harini Srinivasan, and
John Whaley. The Jalapefio dynamic optimizing compiler for Javdava Grande
Conferencepages 129-141, June 1999.

Manuel E. Benitez and Jack W. Davidson. Target-specific global code im-
provement: Principles and applications. Technical Report CS-94-42, Depart-
ment of Computer Science, University of Virginia, April 199%4.,tp://www.cs.
virginia.edu/zephyr/papers.html.

ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1999/RR1999-45.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1999/RR1999-45.ps.Z
http://www.cs.princeton.edu/faculty/appel/papers/143.ps
http://www.cs.princeton.edu/faculty/appel/papers/143.ps
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.htm
http://www.javaworld.com/javaworld/jw-03-1998/jw-03-hotspot.htm
http://www.research.digital.com/wrl/techreports/88.2.ps
http://jcp.org/en/jsr/detail?id=201
http://reality.sgi.com/employees/boehm_mti/papers/boecha.ps.gz
http://reality.sgi.com/employees/boehm_mti/papers/boecha.ps.gz
http://doi.acm.org/10.1145/301618.301648
http://doi.acm.org/10.1145/301618.301648
http://www.cs.virginia.edu/zephyr/papers.html
http://www.cs.virginia.edu/zephyr/papers.html

Bibliography 232

[BFH*92]

[BHOO]

[BHLO8]

[BHNP9S8]

[BIMMO2]

[Blagg]

[BLNR96]

[BM02]

Allen C. Bomberger, William S. Frantz, Ann C. Hardy, Norman Hardy, Charles R.
Landau, and Jonathan S. Shapiro. The KeyKOS(R) nanokernel architecture. In
USENIX Association, editorProceedings of the USENIX Workshop on Micro-
Kernels and Other Kernel Architectures: 27-28 April, 1992, Seattle, WA, USA
pages 95-112, Berkeley, CA, USA, April 1992. USENIX;tp://www.cis.
upenn.edu/~KeyKOS/.

S. Bouchenak and D. Hagimont. Approaches to capturing Java threads state, 2000,
http://sirac.inrialpes.fr/Biblio/publi.html.

Andrew Bernard, Robert Harper, and Peter Lee. How generic is a generic back
end? Using MLRISC as a back end for the TIL compiler. In X. Leroy and A. Ohori,
editors,Proceedings of the Workshop on Types in Compilatiages 53—-77, Kyoto,
Japan, March 1998. Springer-Verlag LNCS 14%8tp://www-2.cs.cmu.edu/

~rwh.

Luc Bougé, Phil Hatcher, Raymond Namyst, and Christian Perez. A multithreaded
runtime environment with thread migration for a HPF data-parallel compiler. In
Proceedings of the 1998 International Conference on Parallel Architectures and
Compilation Techniques (PACT '98)ages 418-425, Paris, France, October 12—
18, 1998. IEEE Computer Society Press.

Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B. Moss.
Beltway: getting around garbage collection gridlock. In Cindy Norris and Jr.
James B. Fenwick, editor®roceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation (PLDJ-@@ume 37, 5

of ACM SIGPLAN Noticegpages 153164, New York, June 17-19 2002. ACM

Presshttp://doi.acm.org/10.1145/512529.512548.

Bruno Blanchet. Escape analysis for object-oriented languages: application to java.
In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applicatipages 20-34. ACM Press, 1999,
http://doi.acm.org/10.1145/320384.320387.

Eva Z. Bem, Anders Linstrom, Stephen Norris, and John Rosenberg. Hoppix - an
implementation of a Unix server on a persistent operating system. In Luis-Felipe
Cabrera and Nayeem Islam, editoRypceedings of 5th International Workshop
on Object-Orientation in Operating Systems (IWOOQ#ges 112-116, Wash-
ington, DC, 1996. IEEE Computer Society,tp://csdl.computer.org/comp/
proceedings/1iwo00s/1996/7692/00/76920112abs.htm.

Stephen M. Blackburn and Kathryn S. McKinley. In or out? putting write barriers
in their place. In David Detlefs, editdSMM’02 Proceedings of the Third Interna-
tional Symposium on Memory ManagemextM SIGPLAN Notices, pages 175—

http://www.cis.upenn.edu/~KeyKOS/
http://www.cis.upenn.edu/~KeyKOS/
http://sirac.inrialpes.fr/Biblio/publi.html
http://www-2.cs.cmu.edu/~rwh
http://www-2.cs.cmu.edu/~rwh
http://doi.acm.org/10.1145/512529.512548
http://doi.acm.org/10.1145/320384.320387
http://csdl.computer.org/comp/proceedings/iwooos/1996/7692/00/76920112abs.htm
http://csdl.computer.org/comp/proceedings/iwooos/1996/7692/00/76920112abs.htm

Bibliography 233

[Boe93]

[Boe96]

[Bor]

[Bou99]

[BPK94]

[Bre88]

[Bri75]

[BWSS]

[Can04]

[CBO1]

184, Berlin, June 2002. ACM Pressitp://doi.acm.org/10.1145/773039.
512452.

Hans-Juergen Boehm. Space efficient conservative garbage collectmocked-

ings of SIGPLAN'93 Conference on Programming Languages Design and Imple-
mentation volume 28(6) oACM SIGPLAN Noticepages 197-206, Albuquerque,
NM, June 1993. ACM Presgaftp://doi.acm.org/10.1145/155090.1551009.

Hans-Juergen Boehm. Simple garbage-collector-safs@GM SIGPLAN Notices
31(5):89-98, May 1996;ttp://doi.acm.org/10.1145/231379.231394. Pro-
ceedings of the 1996 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI).

Borland. Turbo Pascal 7.0 websitéyttp://info.borland.com/pascal/
tp7fact.html.

S. Bouchenak. Pickling threads state in the Java system, April 1998seer.
nj.nec.com/bouchenak99pickling.html. Research Seminar on Advances in
Distributed Systems (ERSADS’99).

Micah Beck, James S. Plank, and Gerry Kingsley. Compiler-assisted checkpoint-
ing. Technical Report UT-CS-94-269, Department of Computer Science, Uni-
versity of Tennessee, December 1994p://cs.utk.edu/pub/TechReports/

1994 /ut-cs-94-269.ps. 7.

T. M. Breuel. Lexical closures for C++. IRJSENIX Proceedings. C++
Conference pages 293-304, 1988http://people.debian.org/~aaronl/
Usenix88-lexic.pdf.

Dianne Ellen Britton. Heap storage management for the programming language
Pascal. Master’s thesis, University of Arizona, 19%btp://www.druseikis.

com/dbritton/msthesis/.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software Practice and Experiencg8(9):807-820, 198&ttp://
www.hpl.hp.com/personal /Hans_Boehm/gc/index.html.

Michaél Van Canneyt.Reference guide for Free Pascal, version 1,.2@nuary
2004, http://www.freepascal.org/.

Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In Cindy
Norris and Jr. James B. Fenwick, editoPspceedings of the ACM SIGPLAN '01
Conference on Programming Language Design and Implementation (PLDI-01)
volume 36.5 ofACM SIGPLAN Noticegpages 125-136, N.Y., June 20-22 2001.
ACMPresshttp://doi.acm.org/10.1145/378795.378823.

http://doi.acm.org/10.1145/773039.512452
http://doi.acm.org/10.1145/773039.512452
http://doi.acm.org/10.1145/155090.155109
http://doi.acm.org/10.1145/231379.231394
http://info.borland.com/pascal/tp7fact.html
http://info.borland.com/pascal/tp7fact.html
citeseer.nj.nec.com/bouchenak99pickling.html
citeseer.nj.nec.com/bouchenak99pickling.html
ftp://cs.utk.edu/pub/TechReports/1994/ut-cs-94-269.ps.Z
ftp://cs.utk.edu/pub/TechReports/1994/ut-cs-94-269.ps.Z
http://people.debian.org/~aaronl/Usenix88-lexic.pdf
http://people.debian.org/~aaronl/Usenix88-lexic.pdf
http://www.druseikis.com/dbritton/msthesis/
http://www.druseikis.com/dbritton/msthesis/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/index.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/index.html
http://www.freepascal.org/
http://doi.acm.org/10.1145/378795.378823

Bibliography 234

[CFLO3]

[CGS99]

[Cha94]

[Chi95]

[CHLOS]

[CHM97]

[CK98]

[CLBHL93]

[DAKOO]

[Day00]

Jeff Chase, Mike Feeley, and Hank Levy. Some issues for single address space
systems. InProceedings of the Fourth Workshop on Workstation Operating
Systemspages 150-154, 1998;tp: //www.cs.washington.edu/homes/levy/
opal/opal.html.

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. Escape analysis for java. Rroceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
pages 1-19. ACM Press, 1999 tp://doi.acm.org/10.1145/320384.320386.

David Chase. Implementation of exception handling, Part II: Calling conventions,
asynchrony, optimizers, and debuggefhe Journal of C Language Translation
6(1):20-32, September 1994. (Not reviewed).

Derek Chiou. Using GCC as an efficient, portable back-end, 1896p://
csg-www.lcs.mit.edu:8001/~derek/Student95a.ps. The Proceedings of the
MIT Student Workshop for Scalable Computing.

Perry Cheng, Robert Harper, and Peter Lee. Generational stack collection and
profile-driven pretenuring. IfProceedings of SIGPLAN'98 Conference on Pro-
gramming Languages Design and Implementati@M SIGPLAN Notices, Mon-

treal, June 1998. ACM Press;tp://doi.acm.org/10.1145/277650.277718.

David Cronk, Matthew Haines, and Piyush Mehrotra. Thread migration in the pres-
ence of pointers. In H. EI-Rewini and Y. N. Patt, editdPsoc. of the 30th Hawaii

Int'l Conf. on Systems Sciences - HICCS'Pages 292-298. IEEE Computer
Society Press, January 199Ztp://csdl.computer.org/comp/proceedings/
hicss/1997/7734/01/7734010292abs.htm.

J.-F. Collard and J. Knoop. A comparative study of reaching-definitions anal-
yses. Technical Report 1998/22, University of Versailles, France, 1998,
//ftp.par.univie.ac.at/pub/papers.

Jeff Chase, Hank Levy, Miche Baker-Harvey, and Ed Lazowska. Opal: A sin-
gle address space system for 64-bit architecturesPréceedings of the Fourth
Workshop on Workstation Operating Systepeges 8085, 1993ttp://www.
cs.washington.edu/homes/levy/opal/opal.html.

Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java server performance: A case
study of building efficient, scalable JVM3BM Systems JournaB9(1):151-174,
2000,http://www.research.ibm.com/journal/sj/391/dimpsaut.html.

L. Daynés. Implementation of automated fine-granularity locking in
a persistent programming language. Software: Practice and Experi-
ence 30(4):325-361, April 2000,http://www3.interscience.wiley.com/
cgi-bin/abstract/71004139/ABSTRACT.

http://www.cs.washington.edu/homes/levy/opal/opal.html
http://www.cs.washington.edu/homes/levy/opal/opal.html
http://doi.acm.org/10.1145/320384.320386
http://csg-www.lcs.mit.edu:8001/~derek/Student95a.ps
http://csg-www.lcs.mit.edu:8001/~derek/Student95a.ps
http://doi.acm.org/10.1145/277650.277718
http://csdl.computer.org/comp/proceedings/hicss/1997/7734/01/7734010292abs.htm
http://csdl.computer.org/comp/proceedings/hicss/1997/7734/01/7734010292abs.htm
ftp://ftp.par.univie.ac.at/pub/papers
ftp://ftp.par.univie.ac.at/pub/papers
http://www.cs.washington.edu/homes/levy/opal/opal.html
http://www.cs.washington.edu/homes/levy/opal/opal.html
http://www.research.ibm.com/journal/sj/391/dimpsaut.html
http://www3.interscience.wiley.com/cgi-bin/abstract/71004139/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/71004139/ABSTRACT

Bibliography 235

[DCI*97]

[DABF+94]

[DABF*96]

[DE93]

[DGVZ98]

[DHO5]

[Diw91]

[Diw94]

[DKL +02]

Andrew Duncan, Bogdan Cocosel, Costin lancu, Holger Kienle, Radu Rugina, Urs
Holzle, and Martin Rinard. OSUIF: SUIF 2.0 with objects. Rroceedings of the
Second SUIF Compiler Workshdptanford University, August21-23 19%%.tp:
//suif.stanford.edu/suifconf/suifconf2/.

Alan Dearle, Rex di Bona, James Farrow, Frans Kenskens, Anders Lindstrom,
John Rosenberg, and Francis Vaughan. Grasshopper: An orthogonally persis-
tent operating systemComputing System§(3):289-312, Summer 19944 tp:
//docs.dcs.napier.ac.uk/DOCS/GET/dearle94c/document .html.

Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, David Hulse, Anders
Lindstrom, Stephen Norris, John Rosenberg, and Francis Vaughan. Protection in the
Grasshopper Operating System.Aroceedings of the 6th International Workshop

on Persistent Object SystenTarascon, France, September 1996.p://docs.
dcs.napier.ac.uk/DOCS/GET/dearle94a/document .html.

David L. Detlefs and John R. Ellis. Safe, efficient garbage collection for C++.
Technical Report 102, Digital Equipment Corporation, Systems Research Center,
Palo Alto, CA, June 1993. Order from src-report@src.dec.com.

A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-Based Mechanized
Verification of Compiler Backends. In Uwe Glasser and Peter H. Schmitt, edi-
tors, Proceedings of the 5th International Workshop on Abstract State Maghines
pages 50-67, Magdeburg, Germany, September 188&://i44www.1info.
uni-karlsruhe.de/~verifix/pres/paper/ASM-WS98-DGVZ.ps.gz.

A. Dearle and D. Hulse. On page-based optimistic process checkpointing. In
Proc. of the Fourth Int'l Workshop on Object Orientation in Operating Systems
(IWOOO0S'95) pages 24-32, August 199http://docs.dcs.napier.ac.uk/
DOCS/GET/dearle95a/document .html.

Amer Diwan. Stack tracing in A statically typed language. In Paul R. Wilson and
Barry Hayes, editorsDOPSLA/ECOOP '91 Workshop on Garbage Collection in
Object-Oriented Systems, Addendum to OOPSLA'91 Proceediaysber 1991,
ftp://ftp.cs.utexas.edu/pub/garbage/GCI1/.

Amer Diwan. Master’s project report, January 1994. Department of Computer and
Information Science, University of Massachusetts.

Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Ethan Lewis, Erez Petrank, and
Dafna Sheinwald. Thread-local heaps for Java. In David Detlefs, etiighiy'02
Proceedings of the Third International Symposium on Memory ManageA€eht
SIGPLAN Notices, pages 76-87, Berlin, June 2002. ACM Piessy: / /www.cs.
technion.ac.il/~erez/Papers/TLH-ISMM-02.ps.

http://suif.stanford.edu/suifconf/suifconf2/
http://suif.stanford.edu/suifconf/suifconf2/
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle94c/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle94c/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle94a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle94a/document.html
http://i44www.info.uni-karlsruhe.de/~verifix/pres/paper/ASM-WS98-DGVZ.ps.gz
http://i44www.info.uni-karlsruhe.de/~verifix/pres/paper/ASM-WS98-DGVZ.ps.gz
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle95a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle95a/document.html
ftp://ftp.cs.utexas.edu/pub/garbage/GC91/
http://www.cs.technion.ac.il/~erez/Papers/TLH-ISMM-02.ps
http://www.cs.technion.ac.il/~erez/Papers/TLH-ISMM-02.ps

Bibliography 236

[DLM 78]

[DMH92]

[DRH*92]

[DWA93]

[Eng00]

[Eto03]

[FK97]

[Flag7]

[FR]

[FRO2]

[Fra9l]

[Gan94]

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperat©ommun.
ACM, 21(11):966-975, 1978:tp://doi.acm.org/10.1145/359642.359655.

Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbage
collection in a statically typed language. 8IGPLAN '92 Conference on Pro-
gramming Language Design and Implementatiommber 27(7) in SIGPLAN No-
tices, pages 273-282, San Francisco, CA (USA), June 1992. ACM SIGPLAN,
http://doi.acm.org/10.1145/143095.143140.

Alan Dearle, John Rosenberg, Frans Henskens, Francis Vaughan, and Kevin Maci-
unas. An examination of operating system support for persistent object systems.
In Proceedings of the Twenty-Fifth Annual Hawaii International Conference on
System Sciencgsages 779—-789, 1992, tp://docs.dcs.napier.ac.uk/DOCS/
GET/dearle92a/document.ps.gz.

DWARF Debugging Information Format, revision 2.,0Jaly 1993 http://www.
eagercon.com/dwarf/dwarf3std.htm.

Ralf S. Engelschall. Portable multithreading: The signal stack trick for user-space
thread creation. IfProceedings of the USENIX Annual Conferengages 239—
250, San Diego, California, USA, June 2000. USENIX Associatiafp: //www.
usenix.org/events/usenix2000/general/engelschall.html.

Hiroaki Etoh. GCC extension for protecting applications from stack-smashing at-
tacks (ProPolice), 2003:tp: //www.trl.ibm.com/projects/security/ssp/.
IBM Research.

Michael Franz and Thomas Kistler. Slim binaries.Communications of

the ACM 40(12):87-94, December 1997 tp://www.ics.uci.edu/~franz/
SlimBinaries.html.

D. Flanagan.Java In A Nutshell A Nutshell Handbook. O’Reilly, 2nd edition,
1997.

Kathleen Fisher and John Reppy. The MOBY programming language website,
http://moby.cs.uchicago.edu/. Department of Computer and Information Sci-
ence, University of Massachusetts.

Kathleen Fisher and John Reppy. Compiler support for lightweight concurrency,
http://moby.cs.uchicago.edu/papers/. Submitted for publication, 2002.

Christopher W. Fraser. A retargetable compiler for ANSIAZM SIGPLAN No-
tices 26(10):29-43, 199http://doi.acm.org/10.1145/122616.122621.

Ravichandran Ganesan. Local variable allocation for accurate garbage collection
of C++. Master's thesis, lowa State University, July 1994;p://archives.cs.

http://doi.acm.org/10.1145/359642.359655
http://doi.acm.org/10.1145/143095.143140
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle92a/document.ps.gz
http://docs.dcs.napier.ac.uk/DOCS/GET/dearle92a/document.ps.gz
http://www.eagercon.com/dwarf/dwarf3std.htm
http://www.eagercon.com/dwarf/dwarf3std.htm
http://www.usenix.org/events/usenix2000/general/engelschall.html
http://www.usenix.org/events/usenix2000/general/engelschall.html
http://www.trl.ibm.com/projects/security/ssp/
http://www.ics.uci.edu/~franz/SlimBinaries.html
http://www.ics.uci.edu/~franz/SlimBinaries.html
http://moby.cs.uchicago.edu/
http://moby.cs.uchicago.edu/papers/
http://doi.acm.org/10.1145/122616.122621
http://archives.cs.iastate.edu/documents/disk0/00/00/00/78/index.html
http://archives.cs.iastate.edu/documents/disk0/00/00/00/78/index.html

Bibliography 237

[GJ86]

[GISBOO]

[GLO3]

[GMOO]

[GS98]

[GS00]

[GS04]

[Har01]

[HB87]

[HC99a]

[HC99b]

iastate.edu/documents/disk0/00/00/00/78/index.html. Technical report
ISUTR 94-12.

Carlo Ghezzi and Mehdi JazayeArogramming language concepts (2nd edghn
Wiley & Sons, Inc., 1986.

James Gosling, Bill Joy, Guy Steele, and Gilad Brachhe JavaVlLanguage
Specification Second EditionAddison-Wesley, Boston, Mass., 200&;tp://
citeseer.nj.nec.com/gosling00java.html.

Lal George and Allen Leung. MLRISC: A framework for retargetable and optimiz-
ing compiler back ends, January 2003yp://www.cs.nyu.edu/leunga/www/
MLRISC/Doc/html/index.html.

Dan Grossman and Greg Morrisett. Scalable certification for typed assembly lan-
guage. InWorkshop on Types in Compilatiomolume 2071 ofLecture Notes in
Computer Scienggages 117-145, Montreal, Canada, September 2000. Springer-
Verlag.

David Gay and Bjarne Steensgaard. Stack allocating objects in Java. Technical
report, Microsoft Research, October 1998tp://research.microsoft.com/
apl/stackalloc-abstract.pdf.

David Gay and Bjarne Steensgaard. Fast escape analysis and stack allocation for
object-based programs. International Conference on Compiler Construction
(CC’2000) volume 1781 ol ecture Notes in Computer Scien&pringer-Verlag,
2000,http://citeseer.nj.nec.com/gay00fast . .html.

John Gilmore and Stan Sheli3DB Internals ManualCygnus Solutions, February
2004,http://www.gnu.org/software/gdb/documentation/. Second edition.

Timothy L Harris. Dynamic adaptive pre-tenuring. limernational Symposium
on Memory Management (ISMM 'QG)olume 36(1), pages 127-136, 20Qitp:
//citeseer.nj.nec.com/article/harris00dynamic.html.

D. M. Harland and B. Beloff. OBJEKT: A persistent object store with an integrated
garbage collectoACM SIGPLAN Notice2(4):70-79, April 1987http://doi.
acm.org/10.1145/24714.24723.

Antony L. Hosking and Jiawan Chen. Mostly-copying reachability-based orthog-
onal persistence ACM SIGPLAN Notices34(10):382—-398, 199%ttp://doi.
acm.org/10.1145/320384.320427.

Antony L. Hosking and Jiawan Chen. PM3: An orthogonal persistent systems
programming language — design, implementation, performance. In Malcolm P.
Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L.

Brodie, editorsProceedings of the Twenty-fifth International Conference on Very

http://archives.cs.iastate.edu/documents/disk0/00/00/00/78/index.html
http://archives.cs.iastate.edu/documents/disk0/00/00/00/78/index.html
http://citeseer.nj.nec.com/gosling00java.html
http://citeseer.nj.nec.com/gosling00java.html
http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html
http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html
http://research.microsoft.com/apl/stackalloc-abstract.pdf
http://research.microsoft.com/apl/stackalloc-abstract.pdf
http://citeseer.nj.nec.com/gay00fast.html
http://www.gnu.org/software/gdb/documentation/
http://citeseer.nj.nec.com/article/harris00dynamic.html
http://citeseer.nj.nec.com/article/harris00dynamic.html
http://doi.acm.org/10.1145/24714.24723
http://doi.acm.org/10.1145/24714.24723
http://doi.acm.org/10.1145/320384.320427
http://doi.acm.org/10.1145/320384.320427

Bibliography 238

[HD96]

[HDOO]

[HDHO1]

[HDHO2]

[Hen02]

[HIB+02]

[Hir00]

[HM90]

Large Databases, Edinburgh, Scotland, UK, 7-10 September,, 1ifes 587—
598, Los Altos, CA 94022, USA, 1999. Morgan Kaufmann Publishetsp: //
www.vldb.org/dblp/db/conf/vldb/HoskingC99.html.

David Hulse and Alan Dearle. A log-structured persistent storePrateedings
of the 19th Australasian Computer Science Confereh@86,http://docs.dcs.
napier.ac.uk/DOCS/GET/hulse96a/document .html.

Martin Hirzel and Amer Diwan. On the type accuracy of garbage collection.
In Tony Hosking, editorSMM 2000 Proceedings of the Second International
Symposium on Memory Managemevitllume 36(1) ofACM SIGPLAN Notices
Minneapolis, MN, October 2000. ACM Press;tp://doi.acm.org/10.1145/
362422.362428.

Martin Hirzel, Amer Diwan, and Antony L. Hosking. On the usefulness of liveness
for garbage collection and leak detection. In J. Lindskov Knudsen, editor,
ceedings of the 15th European Conference on Object Oriented Progranwoing

ume 2072 /2001, pages 181-206, Budapest, Hungary, June 2001. Springer-Verlag,

http://www.cs.colorado.edu/~diwan/ecoop0l-gc-liveness.pdf.

Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of type
and liveness for garbage collection and leak detectidCM Transactions on
Programming Languages and Syster2d4(6):593—624, November 2002ttp:
//doi.acm.org/10.1145/586088.586089.

Fergus Henderson. Accurate garbage collection in an uncooperative environment.
In David Detlefs, editor)]SMM’02 Proceedings of the Third International Sympo-
sium on Memory ManagememCM SIGPLAN Notices, pages 150-156, Berlin,
June 2002. ACM Presgttp://doi.acm.org/10.1145/512429.512449.

Teresa Higuera, Valerie Issarny, Michel Banatre, Gilbert Cabillic, Jean-Philippe
Lesot, and Frederic Parain. Memory management for real-time Java: an effi-
cient solution using hardware suppofReal-Time Systems Journ&002,http:

//www-rocqg.inria.fr/arles/doc/doc.html.

Martin Hirzel. Effectiveness of garbage collection and explicit deallocation. Mas-
ter's thesis, University of Colorado, 20Q0,tp: //www-plan.cs.colorado.edu/
hirzel/papers/.

Antony L. Hosking and J. Eliot B. Moss. Towards compile-time optimisations for
persistence. In Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, ediRycs,
ceedings of the International Workshop on Persistent Object Sydtepismenting
Persistent Object Bases: Principles and Practice, pages 17-27, Martha’s Vineyard,
Massachusetts, September 1990. Morgan Kaufmamnmn,//ftp.cs.umass.edu/
pub/osl/papers/pos90.ps. 7.

http://www.vldb.org/dblp/db/conf/vldb/HoskingC99.html
http://www.vldb.org/dblp/db/conf/vldb/HoskingC99.html
http://docs.dcs.napier.ac.uk/DOCS/GET/hulse96a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/hulse96a/document.html
http://doi.acm.org/10.1145/362422.362428
http://doi.acm.org/10.1145/362422.362428
http://www.cs.colorado.edu/~diwan/ecoop01-gc-liveness.pdf
http://doi.acm.org/10.1145/586088.586089
http://doi.acm.org/10.1145/586088.586089
http://doi.acm.org/10.1145/512429.512449
http://www-rocq.inria.fr/arles/doc/doc.html
http://www-rocq.inria.fr/arles/doc/doc.html
http://www-plan.cs.colorado.edu/hirzel/papers/
http://www-plan.cs.colorado.edu/hirzel/papers/
ftp://ftp.cs.umass.edu/pub/osl/papers/pos90.ps.Z
ftp://ftp.cs.umass.edu/pub/osl/papers/pos90.ps.Z

Bibliography 239

[HM93]

[HMO5]

[HMO1]

[HMDW91]

[HMMMO7]

[HMMMO8]

[HMS92]

[HMSWO00]

[HN97]

Antony L. Hosking and J. Eliot B. Moss. Protection traps and alternatives for mem-
ory management of an object-oriented language. In Barbara Liskov, editor,
ceedings of the 14th Symposium on Operating Systems Pringiplgss 106119,
New York, NY, USA, December 1993. ACM Press.

Antony L. Hosking and J. Eliot B. Moss. Lightweight write detection and check-
pointing for fine-grained persistence. Technical Report 95-084, Purdue University,
1995,ftp://ftp.cs.purdue.edu/pub/hosking/papers/tods.ps.gz.

Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without stop-
ping the world. InJoint ACM Java Grande — ISCOPE 2001 Conferergtanford
University, CA, 2001http://doi.acm.org/10.1145/376656.376810.

Richard L. Hudson, J. Eliot B. Moss, Amer Diwan, and Christopher F. Weight. A
language-independent garbage collector toolkit. COINS Technical Report 91-47,
University of Massachusetts, Object Oriented Systems Laboratory, Department of
comp. and Info. Science, Amherst, MA, 01003, September 1891;,//ftp.cs.
umass.edu/pub/osl/papers/tr9147.ps.z. Only available online.

Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Garbage
collecting the world: One car at atime. GOPSLA'97 ACM Conference on Object-
Oriented Systems, Languages and Applications — Twelth Annual Confevehce
ume 32(10) ofACM SIGPLAN NoticesAtlanta, GA, October 1997. ACM Press,
http://doi.acm.org/10.1145/263700.264353.

Richard L. Hudson, Ron Morrison, J. Eliot B. Moss, and David S. Munro. Where
have all the pointers gone? Rroceedings of 21st Australasian Computer Science
Conferencepages 107-119, Perth, 1998+p://www-ppg.dcs.st-and.ac.uk/
Publications/PostScript/dmos.pointers.ps.gz.

Antony L. Hosking, J. Eliot B. Moss, and Darko StefarfmviA comparative per-
formance evaluation of write barrier implementations Phoceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions pages 92—-109, Vancouver, Canada, October 1892.: / /www.cs.purdue.
edu/homes/hosking/papers.html.

Richard L. Hudson, J. Eliot B. Moss, Sreenivas Subramoney, and Weldon Wash-
burn. Cycles to recycle: Garbage collection on the 1A-64. In Tony Hosking, ed-
itor, ISMM 2000 Proceedings of the Second International Symposium on Memory
Managementvolume 36(1) oACM SIGPLAN NoticesMinneapolis, MN, October
2000. ACM Press.

Antony L. Hosking and Aria P. Novianto. Reachability-based orthogonal persis-
tence for C, C++ and other intransigents. In Peter Dickman and Paul R. Wilson,
editors,O0OPSLA '97 Workshop on Garbage Collection and Memory Management
October 1997http://www.cs.purdue.edu/homes/hosking/papers.html.

ftp://ftp.cs.purdue.edu/pub/hosking/papers/tods.ps.gz
http://doi.acm.org/10.1145/376656.376810
ftp://ftp.cs.umass.edu/pub/osl/papers/tr9147.ps.Z
ftp://ftp.cs.umass.edu/pub/osl/papers/tr9147.ps.Z
http://doi.acm.org/10.1145/263700.264353
http://www-ppg.dcs.st-and.ac.uk/Publications/PostScript/dmos.pointers.ps.gz
http://www-ppg.dcs.st-and.ac.uk/Publications/PostScript/dmos.pointers.ps.gz
http://www.cs.purdue.edu/homes/hosking/papers.html
http://www.cs.purdue.edu/homes/hosking/papers.html
http://www.cs.purdue.edu/homes/hosking/papers.html

Bibliography 240

[HNB99]

[HNCB9S8]

[Hos91]

[Hos95]

[HUI96]

[HVER97]

[Int90a]

[INt90b]

[Int01]

[Jon96]

[JR98]

Brent Hailpern, Linda M. Northrop, and A. Michael Berman. Proceedings of the
14th ACM SIGPLAN conference on object-oriented programming, systems, lan-
guages, and applications, 1999tp://portal.acm.org/toc.cfm?1d=320384.

Antony L. Hosking, Nathaniel Nystrom, Quintin Cutts, and Kumar Brahnmath.
Optimizing the read and write barrier for orthogonal persistencePréiceedings

of the Eighth International Workshop on Persistent Object Syst&ibgron, CA,
August 1998http://www.cs.purdue.edu/homes/hosking/papers.html.

Anthony L. Hosking. Main memory management for persistence. In Paul R. Wilson
and Barry Hayes, editorOPSLA/ECOOP '91 Workshop on Garbage Collection
in Object-Oriented Systems, Addendum to OOPSLA'91 Procee@atzber 1991,
http://www.cs.purdue.edu/homes/hosking/papers.html.

Antony L. Hosking. Lightweight support for fine-grained persistence on stock
hardware PhD thesis, University of Massachusetts at Amherst, February 1995,
http://www.cs.purdue.edu/homes/hosking/papers.html.

David Hulse. A flexible persistent architecture permitting trade-off between snap-
shot and recovery times. Technical Report GH-16, University of Sydney, Computer
Science, N.S.W 2006, Australia, 1996,tp://docs.dcs.napier.ac.uk/DOCS/
GET/hulse96b/document .html.

Gernot Heiser, Jerry Vochteloo, Kevin Elphinstone, and Stephen Russell. The
Mungi kernel API, release 1.0. Technical Report UNSW-CSE-TR-9701, Univer-
sity of New South Wales, Department of Computer Systems, April 1997;
//ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9701.ps. Z.

International Organization for Standardizatidixtended Pascal ISO 10206:1990
Geneva, Switzerland, 1998;tp://pascal-central.com/standards.html.

International Organization for StandardizatioRascal Standard ISO 7185:1990
Geneva, Switzerland, 1998;tp://pascal-central.com/standards.html.

Intel Corporation, Santa Clara, CAA-32 Intel Architecture Software Developers
Manual 2001,http://developer.intel.com/design/pentiumii/manuals/.
Order numbers: 245470, 245471, 245472.

Richard E. Jonessarbage Collection: Algorithms for Automatic Dynamic Memory
Management Wiley, July 1996,http://www.cs.ukc.ac.uk/people/staff/
rej/gcbook/gcbook . html. With a chapter on Distributed Garbage Collection by
R. Lins.

Simon L. Peyton Jones and Norman Ramsey. Machine-independent support for
garbage collection, debugging, exception handling and concurrency. Techni-
cal Report CS-98-19, University of Virginia, August 1998tp://www.eecs.
harvard.edu/~nr/pubs/c--rti-abstract.html.

http://portal.acm.org/toc.cfm?id=320384
http://www.cs.purdue.edu/homes/hosking/papers.html
http://www.cs.purdue.edu/homes/hosking/papers.html
http://www.cs.purdue.edu/homes/hosking/papers.html
http://docs.dcs.napier.ac.uk/DOCS/GET/hulse96b/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/hulse96b/document.html
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9701.ps.Z
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9701.ps.Z
http://pascal-central.com/standards.html
http://pascal-central.com/standards.html
http://developer.intel.com/design/pentiumii/manuals/
http://www.cs.ukc.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.cs.ukc.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.eecs.harvard.edu/~nr/pubs/c--rti-abstract.html
http://www.eecs.harvard.edu/~nr/pubs/c--rti-abstract.html

Bibliography 241

[JRR99]

[KA99]

[Kak9s8]

[Kak99]

[KCC+97]

[KF99]

[KFOO]

[Kin03]

[KIW98]

[KKR *86]

S. L. Peyton Jones, N. Ramsey, and F. Reig. C--: a Portable Assembly Language
that Supports Garbage Collection. In G. Nadathur, edRarceedings of the In-
ternational Conference on Principles and Practice of Declarative Programming
(PPDP’99), Paris, Francevolume 1702 ofLecture Notes in Computer Science
pages 1-28. Springer-Verlag, Berlin, Germany, 1999p: //www.cminusminus.
org/abstracts/ppdp.html.

Prasad Kakulavarapu and José Nelson Amaral. A survey of load balancers in
modern multi-threading systems. Rroceedings of the 11th Symposium on Com-
puter Architecture and High Performance Computipgges 10-16, Natal, Brazil,
September 1999nttp://www.cs.ualberta.ca/~amaral/papers/mtsurvey_
sbac99.ps.gz.

Sheetal V. Kakkad. Address translation and storage management for persistent
object stores. Technical Report CS-TR-98-07, University of Texas, Austin, March
1,1998,ftp://ftp.cs.utexas.edu/pub/techreports/tr98-07.ps.Z.

Kamala Prasad Kakulavarapu. Dynamic load balancing issues in the earth runtime
system. Master’s thesis, School of Computer Science McGill University, Montréal
Québec, Canada, December 1999.

G. N. C. Kirby, R. C. H. Connor, Q. I. Cutts, R. Morrison, D. S. Munro, and
S. Scheuerl. Flask: An architecture supporting concurrent distributed persistent
applications. Technical Report CS/97/4, University of St Andrews, Scotland, 1997.

Thomas Kistler and Michael Franz. A tree-based alternative to Java byte-codes.
International Journal of Parallel Programmin@7(1):21-33, 1999.

Thomas Kistler and Michael Franz. Automated data-member layout of heap objects
to improve memory-hierarchy performancACM Transactions on Programming
Languages and Systen#2(3):490-505, 200ittp://doi.acm.org/10.1145/
353926.353937.

Andy C. King. Removing GC synchronisation (extended version). Technical Re-
port 11-03, University of Kent, April 2003ttp://www.cs.kent.ac.uk/pubs/
2003/1614. Winner (Graduate Division) ACM Student Research Competition.

Sheetal V. Kakkad, Mark S. Johnstone, and Paul R. Wilson. Portable run-time type
description for conventional compilers. In Richard Jones, edi&v|M'98 Pro-
ceedings of the First International Symposium on Memory Managemeiaime
34(3) of ACM SIGPLAN Noticegpages 146-153, Vancouver, October 1998. ACM
Presshttp://doi.acm.org/10.1145/301589.286876.

David A. Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and
Norman Adams. ORBIT: An optimizing compiler for Scheme. Rroceedings
of the ACM SIGPLAN '86 Symposium on Compiler Constructiolume 21(7) of

http://www.cminusminus.org/abstracts/ppdp.html
http://www.cminusminus.org/abstracts/ppdp.html
http://www.cs.ualberta.ca/~amaral/papers/mtsurvey_sbac99.ps.gz
http://www.cs.ualberta.ca/~amaral/papers/mtsurvey_sbac99.ps.gz
ftp://ftp.cs.utexas.edu/pub/techreports/tr98-07.ps.Z
http://doi.acm.org/10.1145/353926.353937
http://doi.acm.org/10.1145/353926.353937
http://www.cs.kent.ac.uk/pubs/2003/1614
http://www.cs.kent.ac.uk/pubs/2003/1614
http://doi.acm.org/10.1145/301589.286876

Bibliography 242

[KM97]

[KR88]

[Lan92]

[LDdB*94]

[LDdB*95]

[Lea99]

[LRD95]

[LY99]

[MBC*96]

ACM SIGPLAN Noticespages 219-233, Palo Alto, CA, June 1986. ACM Press,
http://doi.acm.org/10.1145/13310.13333.

G. N. C. Kirby and R. Morrison. Orthogonal persistence as an implemen-
tation platform for software development environments. Technical Report
CS/97/6, University of St Andrews, 199, tp://www-ppg.dcs.st-and.ac.uk/
Publications/1997.html.

B. W. Kernighan and D. M. RitchieThe C Programming Language, Second Edi-
tion. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

Charles R. Landau. The checkpoint mechanism in KeyKOSProteedings of

the Second International Workshop on Object Orientation in Operating Systems
pages 86-91. IEEE Computer Society, September 1882,://ieeexplore.
ieee.org/xpl/abs_free.jsp?arNumber=252995.

Anders Lindstrom, Alan Dearle, Rex di Bona, J. Matthew Farrow, Frans Henskens,
John Rosenberg, and Francis Vaughan. A model for user-level memory manage-
ment in a persistent distributed environment. In Gopal Gupta, e@itoceedings

of the Seventeenth Annual Computer Science Conference, ACSC-17, PageB
343-354, Christchurch, New Zealand, January 1994p://docs.dcs.napier.
ac.uk/DOCS/GET/lindstrom94a/document .html.

Anders Lindstrom, Alan Dearle, Rex di Bona, Stephen Norris, John Rosenberg,
and Francis Vaughan. Persistence in the Grasshopper kernel. In Ramamoha-
narao Kotagiri, editorProceedings of the Eighteenth Australasian Computer Sci-
ence Conference, ACSC;lj8ages 329-338, Glenelg, South Australia, February
1995. IEEE Computer Societyttp://docs.dcs.napier.ac.uk/DOCS/GET/
lindstrom95a/document .html.

Doug Lea.Concurrent Programming in JaV¥ Second Edition: Design principles
and Patterns The Java Series. Addison-Wesley, 2nd edition, 1999.

Anders Lindstrom, John Rosenberg, and Alan Dearle. The grand unified theory of
address spaces. Rroceedings of the Fifth Workshop on Hot Topics in Operating
Systems (HotOS-Vpages 66—71, Orcas Island, Washington, May 1995p:
//docs.dcs.napier.ac.uk/DOCS/GET/1lindstrom95b/document . html.

Tim Lindholm and Frank YellinThe Java Virtual Machine Specificatiolhe Java
Series. Addison-Wesley, second edition, 1999fp://java.sun.com/docs/
books/vmspec/.

R. Morrison, A. L. Brown, R. C. H. Connor, Q. I. Cutts, A. Dearle, G. N. C.
Kirby, and D. S. Munro. The Napier88 reference manual (release 2.2.1). Tech-
nical report, University of St Andrews, 1996ttp://www.dcs.st-and.ac.uk/
research/publications/MBC+96b.php.

http://doi.acm.org/10.1145/13310.13333
http://www-ppg.dcs.st-and.ac.uk/Publications/1997.html
http://www-ppg.dcs.st-and.ac.uk/Publications/1997.html
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=252995
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=252995
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom94a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom94a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95a/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95b/document.html
http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95b/document.html
http://java.sun.com/docs/books/vmspec/
http://java.sun.com/docs/books/vmspec/
http://www.dcs.st-and.ac.uk/research/publications/MBC+96b.php
http://www.dcs.st-and.ac.uk/research/publications/MBC+96b.php

Bibliography 243

[MCG+99]

[MDB +85]

[Met]

[MH94]

[MHL +92]

[MK87]

[MKM]

[MMS95]

[Mot92]

[Mot93]

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALX86:
A realistic typed assembly language. limformal Proceedings of the Workshop
on Compiler Support for Systems Softwaté¢lanta, Georgia, May 199ittp:
//www.cs.cornell.edu/talc/.

R. Morrison, A. Dearle, P. J. Bailey, A. L. Brown, and M. P. Atkinson. The persis-
tent store as an enabling technology for integrated project support environments. In
Proceedings of the 8th International Conference on Software Enginegraggs
166-173. IEEE Computer Society Press, August 1985.

Metrowerks Inc.CodeWarrior Pascal: Language Referensetp: //wwwpa.win.
tue.nl/facilities/metrowerks/cw/updates/Pascal_Language_Ref.pdf.

J. Eliot B. Moss and Antony L. Hosking. Expressing object residency optimizations
using pointer type annotations. In Malcolm Atkinson, David Maier, and Véronique
Benzaken, editorsRroceedings of the International Workshop on Persistent Ob-
ject SystemsWorkshops in Computing, pages 3-15, Tarascon, France, Septem-
ber 1994. Springer-Verlag, 1995tp://ftp.cs.umass.edu/pub/osl/papers/
pos94.ps.Z.

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Transactions on Data-
base Systemd7(1):94-162, March 1992ttp://icg.harvard.edu/~cs265/
lectures/mohan-1992.pdf.

J. Eliot B. Moss and Walter H. Kohler. Concurrency features for the Trellis/Owl
language. IrEuropean Conference on Object-Oriented Programmpages 223—
232, Paris, France, 1987.

Julia Menapace, Jim Kingdon, and David MacKenZldée "stabs" debug format
http://docs.freebsd.org/info/stabs/stabs.pdf. Revision 2.128.

Bernd Mathiske, Florian Matthes, and Joachim W. Schmidt. On migrating threads.
In Proceedings of the Second International Workshop on Next Generation Infor-
mation Technologies and Systems, Naharia, Isrh@he 1995http: //www.sts.
tu-harburg.de/papers/1995/MMS95a. Also appeared as TR FIDE/95/136 ,
FIDE Technical Report Series, FIDE Project Coordinator, Department of Comput-
ing Sciences, University of Glasgow, Glasgow G128QQ.

Motorola Inc. M68000 Family Programmer’s Reference Manub92,http://
e-www.motorola.com/collateral/M68000PRM.pdf. (Ref: M68000PM/AD).

Motorola Inc. PowerPCM 601 RISC Microprocessor User's ManydB93,http:
//e-www.motorola.com/files/32bit/doc/user_guide/MPC601UM.pdf.
(Ref: MPC601UM/AD).

http://www.cs.cornell.edu/talc/
http://www.cs.cornell.edu/talc/
http://wwwpa.win.tue.nl/facilities/metrowerks/cw/updates/Pascal_Language_Ref.pdf
http://wwwpa.win.tue.nl/facilities/metrowerks/cw/updates/Pascal_Language_Ref.pdf
ftp://ftp.cs.umass.edu/pub/osl/papers/pos94.ps.Z
ftp://ftp.cs.umass.edu/pub/osl/papers/pos94.ps.Z
http://icg.harvard.edu/~cs265/lectures/mohan-1992.pdf
http://icg.harvard.edu/~cs265/lectures/mohan-1992.pdf
http://docs.freebsd.org/info/stabs/stabs.pdf
http://www.sts.tu-harburg.de/papers/1995/MMS95a
http://www.sts.tu-harburg.de/papers/1995/MMS95a
http://e-www.motorola.com/collateral/M68000PRM.pdf
http://e-www.motorola.com/collateral/M68000PRM.pdf
http://e-www.motorola.com/files/32bit/doc/user_guide/MPC601UM.pdf
http://e-www.motorola.com/files/32bit/doc/user_guide/MPC601UM.pdf

Bibliography 244

[MR96]

[MS94]

[Mue97]

[Mut97]

[MWHC92]

[NNH99]

[NO93]

[OHL99]

[Ope03]

[OW99]

Edward Mascarenhas and Vernon Rego. Ariadne: Architecture of a portable
threads system supporting thread migratiorSoftware Practice and Experi-
ence 26(3):327-356, March 199Gttp://www3.interscience.wiley.com/
cgi-bin/abstract?ID=16793.

Florian Matthes and Joachim W. Schmidt. Persistent threads. In Jorge B. Bocca,
Matthias Jarke, and Carlo Zaniolo, editov$,DB’94, Proceedings of 20th Interna-
tional Conference on Very Large Data Bases, September 12-15, 1994, Santiago de
Chile, Chile pages 403-414. Morgan Kaufmann, 1984tp://www.v1ldb.org/
conf/1994/P403.PDF.

F. Mueller. Distributed shared memory threads: DSM-threadBrdo. of the Work-
shop on Run-Time Systems for Parallel Programmipages 31—-40, April 1997,
http://citeseer.nj.nec.com/mueller97distributed.html.

Robert Muth. Register liveness analysis of executable code, Novembemt297,
//www.cs.arizona.edu/alto. Department of Computer Science, The University
of Arizona.

Wen mei W. Hwu and Pohua P. Chang. Efficient instruction sequencing with inline
target insertionlEEE Transactions on Computersl (12):1537-1551, 1992t tp:

//citeseer.ist.psu.edu/hwu90efficient.html.

Flemming Nielson, Hanne R. Nielson, and Chris Hankirinciples of Program
Analysis Springer-Verlag New York, Inc., 1999.

Scott Nettles and James O'Toole. Real-time replication garbage collection. In
Robert Cartwright, editorProceedings of the Conference on Programming Lan-
guage Design and Implementatiopages 217-226, New York, NY, USA, June
1993. ACM Pressyttp://doi.acm.org/10.1145/155090.155111.

Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In search of spec-
ulative thread-level parallelism. IRroceedings of the 1999 International Con-
ference on Parallel Architectures and Compilation Techniques (PACT [e8)es
303-313, Newport Beach, California, October 12—-16, 1999. IEEE Computer Soci-
ety Presshttp://csdl.computer.org/comp/proceedings/pact/1999/0425/
00/04250303abs.htm.

The IEEE and The Open Grouphe Open Group Base Specifications Issu2083,
http://www.opengroup.org/onlinepubs/007904975/. IEEE Std 1003.1, 2003
Edition.

Scott Oaks and Henry WongJava Threads O'Reilly & Associates, Inc., 981

Chestnut Street, Newton, MA 02164, USA, second edition, 1999p: //www.
oreilly.com/catalog/jthreads2/.

http://www3.interscience.wiley.com/cgi-bin/abstract?ID=16793
http://www3.interscience.wiley.com/cgi-bin/abstract?ID=16793
http://www.vldb.org/conf/1994/P403.PDF
http://www.vldb.org/conf/1994/P403.PDF
http://citeseer.nj.nec.com/mueller97distributed.html
http://www.cs.arizona.edu/alto
http://www.cs.arizona.edu/alto
http://citeseer.ist.psu.edu/hwu90efficient.html
http://citeseer.ist.psu.edu/hwu90efficient.html
http://doi.acm.org/10.1145/155090.155111
http://csdl.computer.org/comp/proceedings/pact/1999/0425/00/04250303abs.htm
http://csdl.computer.org/comp/proceedings/pact/1999/0425/00/04250303abs.htm
http://www.opengroup.org/onlinepubs/007904975/
http://www.oreilly.com/catalog/jthreads2/
http://www.oreilly.com/catalog/jthreads2/

Bibliography 245

[PGO02]

[Pie01]

[Piz97]

[Piz99]

[Pri00]

[Pro95]

[PS99]

[RDH*96]

[RI82]

[RJ96]

Tony Printezis and Alex Garthwaite. Visualising the Train garbage collector. In
David Detlefs, editoriSMM’02 Proceedings of the Third International Symposium
on Memory ManagemenfCM SIGPLAN Notices, pages 100-105, Berlin, June
2002. ACM Presghttp://doi.acm.org/10.1145/512429.512436.

Matt Pietrek. Under the hood: I1A-64 registers, parvBSDN Magazing7(16), July
2001,http://msdn.microsoft.com/msdnmag/issues/01/07/hood.

Markus Pizka. Design and implementation of the GNU INSEL compiler gic.
Technical Report TUM—I 9713, Technische Universitat Minchen, Institut fir In-
formatik, 1997 http://wwwbroy.informatik.tu-muenchen.de/~pizka/.

Markus Pizka. Thread segment stacks. Hroceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applica-
tions - PDPTA'99June 199%ttp://wwwbroy.informatik.tu-muenchen.de/
~pizka/pdpta99.final.ps.

Tony PrintezisManagement of Long-Running High-Performance Persistent Object
Stores PhD thesis, Department of Computing Science, University of Glasgow,
Scotland, May 2000.

Todd A. Proebsting. BURS automata generatidé@M Transactions on Program-
ming Languages and Syster3(3):461-486, May 1995 tp://doi.acm.org/
10.1145/203095.203098.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Transactions on Programming Languages and Systehés):895-913,
September 1999http://www.acm.org/pubs/citations/journals/toplas/
1999-21-5/p895-poletto/.

John Rosenberg, Alan Dearle, David Hulse, Anders Lindstrom, and Stephen Norris.
Operating system support for persistent and recoverable computaonsnuni-
cations of the ACM39(9):62—69, September 1996.,tp: //www.acm.org/pubs/
contents/journals/cacm/1996-39/.

Jonathan A. Rees and Norman |. Adams IV. T: a dialect of Lisp or LAMBDA:
The ultimate software tool. IRroceedings of the 1982 ACM symposium on LISP
and functional programmingpages 114-122. ACM Press, 1982tp://portal.

acm.org/citation.cfm?id=802142.

Helena C. C. D. Rodrigues and Richard E. Jones. A cyclic distributed garbage
collector for Network Objects. In Ozalp Babaoglu and Keith Marzullo, editors,
Tenth International Workshop on Distributed Algorithms WDAG®6mber 1151,
pages 123-140, Bologna, Italy, October 1996. Springetp: //www.cs.kent.
ac.uk/pubs/1996/12/.

http://doi.acm.org/10.1145/512429.512436
http://msdn.microsoft.com/msdnmag/issues/01/07/hood
http://wwwbroy.informatik.tu-muenchen.de/~pizka/
http://wwwbroy.informatik.tu-muenchen.de/~pizka/pdpta99.final.ps
http://wwwbroy.informatik.tu-muenchen.de/~pizka/pdpta99.final.ps
http://doi.acm.org/10.1145/203095.203098
http://doi.acm.org/10.1145/203095.203098
http://www.acm.org/pubs/citations/journals/toplas/1999-21-5/p895-poletto/
http://www.acm.org/pubs/citations/journals/toplas/1999-21-5/p895-poletto/
http://www.acm.org/pubs/contents/journals/cacm/1996-39/
http://www.acm.org/pubs/contents/journals/cacm/1996-39/
http://portal.acm.org/citation.cfm?id=802142
http://portal.acm.org/citation.cfm?id=802142
http://www.cs.kent.ac.uk/pubs/1996/12/
http://www.cs.kent.ac.uk/pubs/1996/12/

Bibliography 246

[RJOO]

[Rufo0]

[Sal01]

[San90]

[Sat94]

[SCM99]

[SF99]

[SFS96]

[SHO6]

[SHB*02]

Norman Ramsey and Simon Peyton Jones. A single intermediate language that
supports multiple implementations of exceptionsPhceedings of the ACM SIG-
PLAN 2000 conference on Programming language design and implementation
pages 285-298. ACM Press, 2008;tp://doi.acm.org/10.1145/349299.
349337.

Erik Ruf. Removing synchronization operations from Java. Phoceedings
of SIGPLAN 2000 Conference on Programming Languages Design and Imple-
mentation ACM SIGPLAN Notices, Vancouver, June 2000. ACM Press;p:

//research.microsoft.com/~ruf/preprint.htm.

Alexandru Salcianu. Pointer analysis and its applications for Java programs.
Master’s thesis, Massachusetts Institute of Technology, September 2004,
//www.mit.edu/people/salcianu/publications/sm-thesis.ps.

The Santa Cruz Operation, In6System V Application Binary Interface: SPARC
processor supplemerthird edition, 1990http://www.sparc.com/standards/
psABI3rd.pdf.

S. Satishkumar. Register allocation for accurate garbage collection of C++. Mas-
ter's thesis, lowa State University, July 199k tp://www.cs.iastate.edu/
tech-reports/TR94-13.ps. Technical report ISUTR 94-12.

Olin Shivers, James W. Clark, and Roland McGrath. Atomic heap transactions and
fine-grain interrupts. IProceedings of the Fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP-99lume 34.9 ofACM Sigplan
Notices pages 48-59, N.Y., September 27-29 1999. ACM Press.

Naoya Suzuki and Munehiro Fukuda. A design of self-migrating threads in C++.
Technical Report ISE-TR-99-160, Institute of Information Sciences and Elec-
tronics, University of Tsukuba, May 1999;tp://iris.is.tsukuba.ac.jp/
~fukuda/.

Jonathan S. Shapiro, David J. Farber, and Jonathan M. Smith. State caching in the
EROS kernel. IrProceedings of the 7th International Workshop on Persistent Ob-
ject SystemsCape May, N.J., 1996.ttp://www.eros-os.org/papers/pos96.

ps.

Peter Smith and Norman C. Hutchinson. Heterogeneous process migration: The
Tui system. Technical Report TR-96-04, Department of Computer Science, Uni-
versity of British Columbia, February 1996;p://ftp.cs.ubc.ca/pub/local/
techreports/1996/TR-96-04.ps.gz. Tue, 22 Jul 1997 22:20:09 GMT.

Darko Stefanovi, Matthew Hertz, Stephen M. Blackburn, Kathryn S. McKinley,
and J. Eliot B. Moss. Older-first garbage collection in practice: Evaluation in a Java
virtual machine. In Loren Meissner, editéfCM SIGPLAN Workshop on Memory

http://doi.acm.org/10.1145/349299.349337
http://doi.acm.org/10.1145/349299.349337
http://research.microsoft.com/~ruf/preprint.htm
http://research.microsoft.com/~ruf/preprint.htm
http://www.mit.edu/people/salcianu/publications/sm-thesis.ps
http://www.mit.edu/people/salcianu/publications/sm-thesis.ps
http://www.sparc.com/standards/psABI3rd.pdf
http://www.sparc.com/standards/psABI3rd.pdf
http://www.cs.iastate.edu/tech-reports/TR94-13.ps
http://www.cs.iastate.edu/tech-reports/TR94-13.ps
http://iris.is.tsukuba.ac.jp/~fukuda/
http://iris.is.tsukuba.ac.jp/~fukuda/
http://www.eros-os.org/papers/pos96.ps
http://www.eros-os.org/papers/pos96.ps
ftp://ftp.cs.ubc.ca/pub/local/techreports/1996/TR-96-04.ps.gz
ftp://ftp.cs.ubc.ca/pub/local/techreports/1996/TR-96-04.ps.gz

Bibliography 247

[She03]

[SKS00]

[SKW92]

[SLC99]

[SM98a]

[SM98D]

[SM99]

[SMMO9]

System Performance (MSACM Sigplan Notices, Berlin, Germany, Junel6 2002.
http://doi.acm.org/10.1145/773039.773042.

Tzu-Yung Shen. Assume-guarantee based formal verification of hierarchical soft-
ware designs. Master’s thesis, Embedded System Laboratory at Computer Sci-
ence and Information Engineering, National Chung Cheng University, 160 San-
Hsing, Min-Hsiung, Chia-Yi 621 Taiwan, 2008t tp://embedded.cs.ccu.edu.
tw/paper/Tzu-YungShenThesis2003.pdf.

Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of GC in
Java. In Tony Hosking, editotSMM 2000 Proceedings of the Second International
Symposium on Memory Managemevitllume 36(1) ofACM SIGPLAN Notices
Minneapolis, MN, October 2000. ACM Press;tp://citeseer.nj.nec.com/
shaham0Oeffectiveness.html.

K. Singhal, S. Kakkad, and P. Wilson. Texas: An efficient, portable persistent
store. InProc. Fifth International Workshop on Persistent Object Sysiqrages
13-28, San Miniato Pisa (Italy), September 1982>://ftp.cs.utexas.edu/
pub/garbage/texaspstore.ps.

James M. Stichnoth, Guei-Yuan Lueh, and Michal Cierniak. Support for garbage
collection at every instruction in a Java compiler. Aroceedings of SIGPLAN’'99
Conference on Programming Languages Design and Implement#ioll SIG-
PLAN Notices, pages 118-127, Atlanta, May 1-4, 1999. ACM Pressp:
//doi.acm.org/10.1145/301618.301652

Alan Skousen and Donald Miller. The Sombrero distributed single address space
operating system project. Proceedings of the 2nd USENIX Windows NT Sympo-
sium (WINNT-98)pages 168-168, Berkeley, August 3—5 1998. USENIX Associa-

tion, ftp://ftp.eas.asu.edu/pub/cse/sasos/usenix_nt.pdf.

Frederick Smith and Greg Morrisett. Comparing mostly-copying and mark-
sweep conservative collection. Rroceedings of the First International Sympo-
sium on Memory Managemeipiages 68—78. ACM Press, 1998tp://www.cs.

cornell.edu/talc/papers/mcc—ismm. pdf.

Alan Skousen and Donald Miller. Using a single address space operating system for
distributed computing and high performance. 18th IEEE International Perfor-
mance, Computing, and Communications Confergpages 8—14, February 1999,
ftp://ftp.eas.asu.edu/pub/cse/sasos/ipccc99.pdf.

Darko Stefanowv, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based garbage
collection. In Loren Meissner, editoBroceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages & Applica-
tions (OOPSLA'"99)volume 34.10 ofACM Sigplan Noticespages 370-381, N.

http://doi.acm.org/10.1145/773039.773042
http://embedded.cs.ccu.edu.tw/paper/Tzu-YungShenThesis2003.pdf
http://embedded.cs.ccu.edu.tw/paper/Tzu-YungShenThesis2003.pdf
http://citeseer.nj.nec.com/shaham00effectiveness.html
http://citeseer.nj.nec.com/shaham00effectiveness.html
ftp://ftp.cs.utexas.edu/pub/garbage/texaspstore.ps
ftp://ftp.cs.utexas.edu/pub/garbage/texaspstore.ps
http://doi.acm.org/10.1145/301618.301652
http://doi.acm.org/10.1145/301618.301652
ftp://ftp.eas.asu.edu/pub/cse/sasos/usenix_nt.pdf
http://www.cs.cornell.edu/talc/papers/mcc-ismm.pdf
http://www.cs.cornell.edu/talc/papers/mcc-ismm.pdf
ftp://ftp.eas.asu.edu/pub/cse/sasos/ipccc99.pdf

Bibliography 248

[SOT+00]

[Spa92]

[Spa94]

[SS92]

[SSF99]

[Staa]

[Stab]

[Ste00]

[Sun99]

[Sun02]

Y., November 1-5 1999. ACM Pressitp://citeseer.nj.nec.com/123024.
html.

T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatso, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal39(1):175-193, 2000,ttp://www.research.ibm.com/
journal/sj/391/suganuma.html.

SPARC International IncThe SPARC Architecture Manual: Versionl®92 http:
//www.sparc.com/standards/.

SPARC International IncThe SPARC Architecture Manual: Version994 http:

//www.sparc.com/standards/.

D. Stein and D. Shah. Implementing lightweight threads. In USENIX As-
sociation, editor,Proceedings of the Summer 1992 USENIX Conference: June
8-12, 1992, San Antonio, Texas, U$@ages 1-10, Berkeley, CA, USA, Sum-
mer 1992. USENIX, http://www.cs.rice.edu/~amsaha/Comp620/Paperd_
03rdMar/stein92implementing.pdf.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast ca-
pability system. Inl7th ACM Symposium on Operating Systems Principles (SOSP
'99), 1999,http://www.eros—-os.org/papers/sosp99-eros—-preprint.ps.

Richard StallmanGNU Compiler Collection Internals - v3.4 - updated 28 Decem-
ber 2002 Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USAhttp://gcc.gnu.org/onlinedocs/.

Richard StallmanUsing the GNU Compiler Collection - Version 3Rree Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, US&:

//gcc.gnu.org/onlinedocs/.

Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. In Tony
Hosking, editor|SMM 2000 Proceedings of the Second International Symposium
on Memory Managemenvolume 36(1) ofACM SIGPLAN NoticesMinneapo-

lis, MN, October 2000. ACM Pressittp://doi.acm.org/10.1145/362422.
362432.

Sun Microsystems. picoJava-ll Programmer's Reference ManuaMarch
1999, http://spacejug.org/resources/Embedded_Java/picoJava/
picoJdava-II.pdf.

Sun Microsystems, 901 San Antonio Road, Palo Alto, CA 94303-4900, USA.
SPARC Assembly Language Reference Mandaly 2002,http://docs.sun.
com/db/doc/816-1681.

http://citeseer.nj.nec.com/123024.html
http://citeseer.nj.nec.com/123024.html
http://www.research.ibm.com/journal/sj/391/suganuma.html
http://www.research.ibm.com/journal/sj/391/suganuma.html
http://www.sparc.com/standards/
http://www.sparc.com/standards/
http://www.sparc.com/standards/
http://www.sparc.com/standards/
http://www.cs.rice.edu/~amsaha/Comp620/Paper4_03rdMar/stein92implementing.pdf
http://www.cs.rice.edu/~amsaha/Comp620/Paper4_03rdMar/stein92implementing.pdf
http://www.eros-os.org/papers/sosp99-eros-preprint.ps
http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/
http://gcc.gnu.org/onlinedocs/
http://doi.acm.org/10.1145/362422.362432
http://doi.acm.org/10.1145/362422.362432
http://spacejug.org/resources/Embedded_Java/picoJava/picoJava-II.pdf
http://spacejug.org/resources/Embedded_Java/picoJava/picoJava-II.pdf
http://docs.sun.com/db/doc/816-1681
http://docs.sun.com/db/doc/816-1681

Bibliography 249

[Tar00]

[TK99]

[TMG*+02]

[TSKS83]

[TVRvS™90]

[VD92]

[Voc9g]

[WAOO]

[WGO5]

[WG98]

David Tarditi. Compact garbage collection tables. In Tony Hosking, ed&diM

2000 Proceedings of the Second International Symposium on Memory Manage-
ment volume 36(1) ofACM SIGPLAN NoticesMinneapolis, MN, October 2000.
ACM Presshttp://doi.acm.org/10.1145/362422.362437.

K. Thitikamol and P. Keleher. Thread migration and communication minimization
in DSM systemsProc. of the IEEE, Special Issue on Distributed Shared Memory
87(3):487-497, March 199%ttp://ieeexplore.ieee.org/xpl/abs_free.
jsp?arNumber=747869.

Jim Trevor, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and
Yanling Wang. Cyclone: A safe dialect of C. Wsenix Annual Technical Confer-
ence pages 275-288, Monterey, CA, June 200Zp: //www.cs.cornell.edu/

projects/cyclone/.

A. S. Tanenbaum, H. Van Staversen, E. G. Keizer, and J. W. Stevenson. A practi-
cal tool kit for making portable compiler€Communications of the Association of
Computing Machinery26(9):654—660, September 1983.

Andrew S. Tanenbaum, Robert van Renesse, Hans van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experience with the
Amoeba distributed operating syste@ACM, 33(12):46-63, December 1990.

Francis Vaughan and Alan Dearle. Supporting large persistent stores using con-
ventional hardware. IrFifth International Workshop on Persistent Object Sys-
tems San Miniato, Italy, September 1992. Springer-Verlag;p://docs.dcs.
napier.ac.uk/DOCS/GET/vaughan92a/document.ps.gz. available online only,

in ftp.gh.cs.su.oz.au as GH-02.

Jerry Vochteloo. Design, implementation and performance of protection in the
Mungi single-address-space operating systefhD thesis, University of New
South Wales, 1998ftp://ftp.cse.unsw.edu.au/pub/users/disy/papers/
Vochteloo:phd.ps.gz.

Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors
(extended version). Technical Report TR-624-00, Princeton University, Com-
puter Science, December 2008 tp://ncstrl.cs.Princeton.EDU/expand.
php?1d=TR-624-00.

W. M. Waite and G. Goos. Compiler Construction Springer, New
York, 1995, ftp://id44ftp.info.uni-karlsruhe.de/pub/papers/ggoos/
CompilerConstruction.ps.qgz.

Derek White and Alex Garthwaite. The GC interface in the EVM. Techni-
cal Report SML TR-98-67, Sun Microsystems Laboratories, December 1998,
http://research.sun.com/research/techrep/1998/abstract-67.html.

http://doi.acm.org/10.1145/362422.362437
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=747869
http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=747869
http://www.cs.cornell.edu/projects/cyclone/
http://www.cs.cornell.edu/projects/cyclone/
http://docs.dcs.napier.ac.uk/DOCS/GET/vaughan92a/document.ps.gz
http://docs.dcs.napier.ac.uk/DOCS/GET/vaughan92a/document.ps.gz
ftp://ftp.cse.unsw.edu.au/pub/users/disy/papers/Vochteloo:phd.ps.gz
ftp://ftp.cse.unsw.edu.au/pub/users/disy/papers/Vochteloo:phd.ps.gz
http://ncstrl.cs.Princeton.EDU/expand.php?id=TR-624-00
http://ncstrl.cs.Princeton.EDU/expand.php?id=TR-624-00
ftp://i44ftp.info.uni-karlsruhe.de/pub/papers/ggoos/CompilerConstruction.ps.gz
ftp://i44ftp.info.uni-karlsruhe.de/pub/papers/ggoos/CompilerConstruction.ps.gz
http://research.sun.com/research/techrep/1998/abstract-67.html

Bibliography 250

[WGQH97]

[WGQH98]

[Wir88]

[WK92]

[WMR+95]

[Wol99]

[WR99]

[XMROO]

Boris Weissman, Benedict Gomes, Jurgen W. Quittek, and Michael Holtkamp. A
performance evaluation of fine grain thread migration with active threads. Tech-
nical Report TR-97-054, International Computer Science Institute, Berkeley, CA,
December 1997.

B. Weissman, B. Gomes, J. Quittek, and M. Holtkamp. Efficient fine-grain thread
migration with active threads. IRroceedings of the 1st Merged International Par-
allel Processing Symposium and Symposium on Parallel and Distributed Process-
ing (IPPS/SPDP-98)ages 410-414, Los Alamitos, March 30—April 3 1998. IEEE
Computer Society.

Niklaus Wirth. From Modula to Oberorsoftware Practice and Experienct(7),
July 1988,ftp://ftp.inf.ethz.ch/pub/software/Oberon/OberonV4/Docu/
ModToOberon.ps.gz. Originally released as ETH CS Dept technical report number
143.

Paul R. Wilson and Sheetal V. Kakkad. Pointer swizzling at page fault time: Effi-
ciently and compatibly supporting huge addresses on standard hardwéanéerin
national Workshop on Object Orientation in Operating Systepages 364-377,
Paris, France, September 1992. IEEE Pre&ss,://ftp.cs.utexas.edu/pub/

garbage/swizz.ps.

Tim Wilkinson, Kevin Murray, Stephen Russell, Gernot Heiser, and Jochen Liedtke.
Single address space operating systems. Technical Report UNSW-CSE-TR-9504,
School of Computer Science and Engineering, University of New South Wales,
Australia, 1995,ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9504.

ps.Z.

Mario Wolczko. Using a Tracing Java Virtual Machine to gather data on the behav-
ior of Java programs. Technical Report SML 98-0154, Sun Microsystems, March
1999,http://research.sun.com/people/mario/tracing-jvm/.

John Whaley and Martin Rinard. Compositional pointer and escape analysis
for java programs. IrProceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applicajpages 187—
206. ACM Press, 199%ttp://doi.acm.org/10.1145/320384.320400.

Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety checking of machine code.
ACM SIGPLAN Notices35(5):70-82, 2000nhttp://citeseer.ist.psu.edu/
xul0O0safety.html.

ftp://ftp.inf.ethz.ch/pub/software/Oberon/OberonV4/Docu/ModToOberon.ps.gz
ftp://ftp.inf.ethz.ch/pub/software/Oberon/OberonV4/Docu/ModToOberon.ps.gz
ftp://ftp.cs.utexas.edu/pub/garbage/swizz.ps
ftp://ftp.cs.utexas.edu/pub/garbage/swizz.ps
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9504.ps.Z
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9504.ps.Z
http://research.sun.com/people/mario/tracing-jvm/
http://doi.acm.org/10.1145/320384.320400
http://citeseer.ist.psu.edu/xu00safety.html
http://citeseer.ist.psu.edu/xu00safety.html

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Summary
	1.Introduction
	1.1.Program services
	1.2.Machine instructions and preemption
	1.3.The issues involved
	1.3.1.Garbage collection
	1.3.2.Data persistence
	1.3.3.Data migration
	1.3.4.Thread persistence and migration, same architecture
	1.3.5.Thread persistence and migration, heterogeneous architectures

	1.4.Summary

	2.Focusing on the Problems
	2.1.Requirements
	2.2.From the problems to the techniques
	2.3.Techniques
	2.3.1.Type tracking and data conversion in the heap
	2.3.2.Type tracking and data conversion for the stack
	2.3.3.Type tracking and data conversion for registers and microprocessor state

	2.4.Possible problems

	3.Implementation Techniques
	3.1.Existing techniques
	3.2.The context
	3.3.A test environment
	3.3.1.Why GCC?
	3.3.2.SPARC v8

	3.4.Types and modes
	3.4.1.Modes
	3.4.2.Split pointers

	3.5.More elements to consider
	3.6.Unusual features of compilers
	3.7.Unusual features used in microprocessors
	3.7.1.Register windows
	3.7.2.Delay slots

	3.8.Tracking modes in the stack
	3.8.1.Stack components
	3.8.2.Problems and solutions
	3.8.2.1.Uninitialised pointers
	3.8.2.2.Arrays of uninitialised pointers

	3.9.Tracking modes in the heap
	3.10.Pointers and derived pointers

	4.Pointer Discovery in the Registers
	4.1.Introduction
	4.2.Local annotations
	4.3.More details on reconstructing mode information
	4.4.Prologue and epilogue

	5.Multi-mode Liveness Analysis and Consistency Checks
	5.1.Introduction
	5.2.Multi-mode liveness analysis
	5.2.1.The context
	5.2.2.Formal definitions
	5.2.3.Dynamic control flow
	5.2.4.Expected mode
	5.2.5.Mode calculation
	5.2.6.The mode algorithm
	5.2.7.Termination and complexity
	5.2.8.The effect of calls

	5.3.Sanity checks
	5.3.1.Additional checks
	5.3.2.Implementation

	5.4.Delay slots elimination
	5.4.1.A model for delay slots
	5.4.2.Conditions on delay slots
	5.4.2.1.Delay slots as branch targets
	5.4.2.2.Control Transfer Instructions in delay slots
	5.4.2.3.Last instruction in the routine body
	5.4.2.4.Possible uses of delay slots

	5.4.3.A few examples
	5.4.3.1.Unconditional branch
	5.4.3.2.Annulled, branch always
	5.4.3.3.Annulled, conditional branch

	5.4.4.Delayed calls
	5.4.5.Combining instructions
	5.4.6.Sanity checks for combined instructions
	5.4.6.1.Validity
	5.4.6.2.Sufficiency
	5.4.6.3.Consistency of de f and use

	5.4.7.Delay slot elimination: transformed functions
	5.4.7.1.Unconditional branch, delayed
	5.4.7.2.Unconditional branch, annulled delay
	5.4.7.3.Conditional branch, delayed
	5.4.7.4.Conditional branch, annulled delay
	5.4.7.5.Call instruction, delayed
	5.4.7.6.Other cases

	5.4.8.The delay slot elimination algorithm

	6.Pointer Discovery in the Stack
	6.1.Stack components
	6.2.Return addresses
	6.3.Dynamic chain
	6.4.Static chain
	6.5.Arguments
	6.6.Return value
	6.7.Automatic variables
	6.7.1.Frame variants
	6.7.2.Liveness of variables or components with fixed offset
	6.7.3.Nested subroutines
	6.7.4.Reference passing
	6.7.5.Arrays
	6.7.6.Semi-dynamic variables
	6.7.7.Extracting layout information

	6.8.Blocks obtained from ``alloca()''
	6.9.Registers save area
	6.10.Temporary values
	6.11.Objects
	6.12.Other information on the stack

	7.Pointer Discovery in the Heap
	7.1.Pointer discovery
	7.1.1.Block layouts
	7.1.2.Allocation
	7.1.3.Initialisation
	7.1.4.Code in the heap

	8.Runtime Module
	8.1.Data structures
	8.2.Structure of the runtime module
	8.3.Extracting the context
	8.4.Pointer discovery
	8.4.1.Registers and register save areas
	8.4.2.Stack and heap

	8.5.Critical sections and foreign code

	9.Implementation
	9.1.GCC in brief
	9.1.1.GCC and the Register Transfer Language
	9.1.2.Rule rewriting

	9.2.The compilation process
	9.3.Extracting the mode information
	9.3.1.Partial integers
	9.3.2.Customised expansions

	9.4.Pointer discovery in the registers
	9.4.1.Registers in the SPARC ABI
	9.4.2.Prologue and epilogue

	9.5.Implementation of the liveness analysis
	9.5.1.An example
	9.5.2.A custom compression scheme

	9.6.Discovery in stack and heap
	9.6.1.Pointer discovery for the stack
	9.6.2.Heap implementation

	9.7.Runtime module implementation
	9.7.1.Deferring the service routine
	9.7.2.Pointer discovery implementation
	9.7.2.1.Registers
	9.7.2.2.Register save areas
	9.7.2.3.Automatic variables and stack-based arguments
	9.7.2.4.Heap

	9.7.3.Service routine

	9.8.Arrays and GCC
	9.9.Limitations/Future developments
	9.10.Testing
	9.10.1.Static testing
	9.10.2.Dynamic testing and debugging

	9.11.Results

	10.Derived Pointers
	10.1.Pointers and heap blocks
	10.2.Common sources of derived values
	10.3.Dealing with derived pointers
	10.3.1.Derivation tables
	10.3.2.A different approach
	10.3.2.1.Array representation
	10.3.2.2.More general virtual origins

	11.Pointer Discovery as an Enabling Technology
	11.1.Thread-local heaps: an introduction
	11.1.1.Thread-local heaps
	11.1.2.The shared heap
	11.1.3.Shareability by reachability
	11.1.4.Static analysis

	11.2.Implementation alternatives
	11.2.1.Copying vs. flagging
	11.2.2.Segregated heaps

	11.3.Pointer tracking: a practical solution

	12.Evaluation and Conclusions
	A.JBE and ExactVM
	B.Preallocation in Segregated Thread-local Heaps
	B.1.The call chain as an indicator
	B.2.Dynamic profiling
	B.3.Correlating allocation sites and shareability
	B.4.Percentage of objects vs. categories
	B.5.Correlation graphs
	B.6.Delay graphs
	B.7.Traps & Copies
	B.8.Gathering data
	B.8.1.Without prediction
	B.8.2.Allocation sites
	B.8.3.Hashing predictor: simple but effective
	B.8.4.Additional considerations

	B.9.Some results
	B.10.Conclusions
	B.11.Further work
	B.12.Graphs

	C.Examples
	C.1.Pointer discovery in the registers
	C.2.Fully optimised code
	C.3.Side-by-side comparison
	C.4.Tables from multiple languages
	C.4.1.Java
	C.4.2.C language
	C.4.3.C using mostly pointers
	C.4.4.Ada
	C.4.5.Pascal
	C.4.6.C using various expressions
	C.4.7.C++

	Bibliography

