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Abstract

We report on our experience with the implementation of
the Real-time Specification for Java (RTSJ) in the DARPA
Program Composition for Embedded System (PCES) pro-
gram. Within the scope of PCES, Purdue University and the
Boeing Company collaborated on the development of Ovm,
an open source implementation of the RTSJ virtual machine.
Ovm was deployed on a ScanEagle Unmanned Aerial Vehi-
cle and successfully flight tested during the PCES Capstone
Demonstration.

1. Introduction
The Real-Time Specification for Java (RTSJ) [3] was de-
signed to be used to construct large-scale Distributed Real-
time Embedded (DRE) systems [14, 6]. The key benefits
of the RTSJ are, first, that it allows programmers to write
real-time programs in a type-safe language, thus reducing
many opportunities for catastrophic failures; and second,
that it allows hard-, soft- and non-real-time code to interop-
erate in the same execution environment. This is becoming
increasingly important as multi-million line DRE systems
are being developed in Java, e.g. for avionics, shipboard
computing and simulation. The success of these projects
hinges on the RTSJ’s ability to combine plain Java com-
ponents with real-time ones. As of this writing commercial
implementations of the specification have been released by
IBM, SUN, Aonix, Aicas, and Timesys, and a number of
research projects are working on open source implementa-
tions [8, 2, 5, 1, 10, 4, 17, 7, 16].
The DARPA PCES project’s Capstone Demonstration in-
tegrated several independently developed real-time soft-
ware systems into a live demonstration of their combined
functionality, using both real and simulated components.

As part of that demonstration Boeing and Purdue Univer-
sity demonstrated autonomous navigation capabilities on
an Unmanned Air Vehicle (UAV) known as the ScanEa-
gle (Fig. 1). The ScanEagle is a low-cost, long-endurance
UAV developed by Boeing and the Insitu Group. This UAV
is four-feet long, has a 10-foot wingspan, and can remain
in the air for more than 15 hours. The primary opera-
tional use of the ScanEagle vehicle is to provide intelli-
gence, surveillance and reconnaissance data. The ScanEa-
gle software, called PRiSMj, was developed using the Boe-
ing Open Experiment Platform (OEP) and associated de-
velopment tool set. The OEP provides a number of differ-
ent run-time product scenarios which illustrate various com-
binations of component interaction patterns found in actual
Bold Stroke avionics systems. These product scenarios con-
tain representative component configurations and interac-
tions. These product scenarios were developed using three
rate group priority threads (20Hz, 5Hz, and 1Hz) and an
event notification mechanism.
The PCES project was a success. PRiSMj with Ovm was
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We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.
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Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.
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Figure 1. A ScanEagle UAV with the Boeing
PRiSMj software and the Ovm Real-time JVM.



the first Real-time Specification for Java system to pass
Boeing’s internal qualification tests. Ovm and PRiSMj met
all of Boeing’s operational requirements and the flight test
conducted in April 2005 was a success. The system was
awarded the Java 2005Duke’s Choice Awardfor innova-
tion in Java technology.
This paper reports on our experience working with and im-
plementing the Real-time Specification for Java. While our
experience is limited to a single application on one virtual
machine, we view these results are encouraging.

2. Real-time Java
The Real-Time Specification for Java (RTSJ) was developed
within the Java Community Process as the first Java Spec-
ification Request (JSR-1). Its goal was to “provide an Ap-
plication Programming Interface that will enable the cre-
ation, verification, analysis, execution, and management of
Java threads whose correctness conditions include timeli-
ness constraints” [3] through a combination of additional
class libraries, strengthened constraints on the behavior of
the JVM, and additional semantics for some language fea-
tures, but without requiring special source code compilation
tools.

3. The Ovm Virtual Machine
Ovm is a generic framework for building virtual machines
with different features. It supports components that imple-
ment core VM features in a wide variety of ways. While
Ovm was designed to allow rapid prototyping of new VM
features and new implementation techniques, its current im-
plementation was driven by the requirements of the PCES
project, namely to execute production code written to the
RTSJ at an acceptable level of performance. While Ovm’s
internal interfaces have been carefully designed for gener-
ality, much of the coding effort has focused on implemen-
tations that achieve high runtime performance with low de-
velopment costs. The real-time support in Ovm is compli-
ant with version 1.0 of the RTSJ in the following areas:
– Real-time thread and priority scheduler support: This
is the basic priority-preemptive scheduler defined for real-
time threads, and providing for deadline monitoring of those
threads.
– Priority inheritance monitors: All monitor locks support
the priority-inheritance protocol.
– Periodic and one-shot timers: These utility classes are
used to release time-triggered asynchronous event handlers.
– General asynchronous event handler support: These han-
dlers support the release of schedulable entities in response
to system, or application defined events.
– Memory management: Scoped memory areas are fully
supported along with the necessary checks on their usage.
The use ofNoHeapRealtimeThread objects is supported.

Full preemption of the garbage collector is not yet imple-
mented.
Sources and documentation for Ovm are available from [1],
and the reader is referred to [11] for further discussion of
Ovm.

3.1. Design and Implementation of a RTSJ VM
The overall architecture of Ovm consists of an executive-
domain core around which multiple user-domain “personal-
ities” can execute. The executive domain consists of a core
set of system services that provide the functionality needed
by the user domain. This includes code translation and exe-
cution, memory management, threading and synchroniza-
tion, and other services typically implemented in native
code, or delegated to the operating system, in other virtual
machines. The executive domain is isolated from the user
domain and has its own type system and type name space
(it has its own notion ofjava.lang.Object which is
quite separate from, and quite different to, that defined in
the user domain for a Java compatible virtual machine).
Real-time support in Ovm consists of both an RTSJ-
compatible implementation of the user domain
javax.realtime runtime library, and realtime vari-
ants of many core VM services defined in the executive do-
main. We discuss some of the main design choices and
their implications.

Java in Java.Ovm is implemented almost exclusively in
Java with only small amounts of C for the bootloader and
low level facilities. Even though we have not conducted a
thorough study, we have anecdotal evidence of higher de-
veloper productivity and lower defect rates. The entire sys-
tem is comprised of approximately 250,000 lines of Java
code and 15,000 lines of C code.

Ahead of time compilation.The high performance real-
time configuration of Ovm relies on ahead of time compila-
tion. The entire program is processed to maximize the op-
portunities for optimization and an executable image is gen-
erated for a particular Java application. The quality of the
optimization is further discussed in section 3.2.5. The Ovm
optimizing compiler (called j2c) translates the entire appli-
cation and virtual machine code into C++ which is then pro-
cessed by gcc. The advantages of this approach is that we
obtain portability at almost no cost and that we can offload
some of the low level optimizations to the native compiler.
The main drawback is that by going to C++, we lose some
control over the generated code. So, for instance, some care
has to be taken to avoid code bloat due to overeager in-
lining (balancing the inlining that is essential for perfor-
mance). Another issue is that the C++ compiler hinders pre-
cise garbage collection, which has forced us to rely on a
mostly-copying collector. This has not proven to be a sig-
nificant problem for the implementation of the RTSJ – but



does complicate the task of implementing real-time garbage
collection algorithms.

User-level threading.Threading is implemented in the VM
by using user-levelcontextsthat are executed within a sin-
gle native operating system thread, with all scheduling and
preemption controlled by the VM. Asynchronous event pro-
cessing, such as timer interrupts and I/O completion sig-
nals, is implemented synchronously within the VM by the
means of compiler inserted cheappoll checks. The cost as-
sociated with the polling is small (see Section 3.2.4) and
can be reduced further by more aggressive compiler anal-
ysis, for instance loop unrolling can decrease the number
of poll-checks needed as it reduces the number of back-
branches. An advantage of explicit poll-checks is that the
compiler knows when a context switch may occur and also
when a sequence of instructions is atomic. This simplifies
code generation and allows for some operations performed
by the VM to forgo explicit synchronization. Since we do
our own scheduling and synchronization, we need not rely
on particular operating system features, and so do not re-
quire the use of proprietary, commercial real-time operat-
ing systems. With Ovm it is possible to run RTSJ programs
on any OS and have the application threads behave cor-
rectly with respect to each other; this guarantee is not ex-
tended to other processes running on the same machine, of
course. System-level blocking I/O calls such asread or
write will stall the whole VM. The Ovm I/O subsystem
solves this by restricting system calls to the non-blocking
and asynchronous varieties. In order to properly implement
Java’s blocking I/O APIs, Ovm simulates standard POSIX
semantics by doing its own scheduling. In effect, the Ovm
I/O subsystem includes much of the same scheduling ma-
chinery that would be found in an operating system kernel.

3.2. Performance Evaluation
We have evaluated Ovm on a number of benchmarks and re-
port some of these results here. All benchmarks in this sec-
tion were run on an AMD Athlon(TM) XP1900+ running
at 1.6GHz, with 1GB of memory. The operating system
is Real-time Linux with a kernel release number of 2.4.7-
timesys-3.1.214.

3.2.1. Throughput Benchmarks. We evaluate the raw
performance of Ovm on the SpecJVM98 benchmark suite
and compare with the Timesys jTime RTSJVM (com-
piled), and the GCJ compiler. The goal of this experiment
is to provide a performance baseline. We measure two ver-
sions of Ovm: one which is the standard Ovm and the
other (Ovm w. bars) including the read and write barri-
ers on memory operation mandated by the RTSJ. jTime,
likewise, has read/write barriers turned on. All three sys-
tems are ahead-of-time compiled.
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Figure 2. SpecJVM98. (normalized wrt. Ovm)

The results, given in Fig. 2 show that performances of Ovm
and GCJ are close. Typically, Ovm is slightly faster with
the exception of mpegaudio where massive slowdown is due
in part to our treatment of floating point numbers, this will
be addressed in forthcoming releases. The figure also illus-
trates the costs of RTSJ barriers (up to 50%). Now, clearly
SpecJVM is by no means representative of a real-time ap-
plication, but it gives a worst case estimate. GCJ did not ex-
ecute jack successfully, and jTime could not run jess, db,
javac and mpegaudio.

3.2.2. Startup Latency. We measure the startup time of
Ovm on a 300MHz PPC. Fig. 3 gives the distribution of the
time required to load the virtual machine from disk, per-
form any initialization and up to and excluding the first in-
struction in the user’smain() method. The image used here
is that of PRiSMj (22 MB of data, and 11 MB of code).

3.2.3. Boeing Latency Benchmarks.Early on in the
project Boeing developed a number of latency bench-
marks to compare implementations of the RTSJ [15].
Fig. 4 shows the latency of a number of basic RTSJ opera-
tions and compare to the jTime virtual machine on Timesys
Linux. The figure shows the minimum, average and maxi-
mum latencies of 100 runs.
Event Latency: We create an event handler and periodically
fire an event in a thread. We measure latency between the
time of firing the event and the time the event handler is in-
voked.
Periodic Thread Jitter: We run a single periodic thread with
a given period and with no computation performed. We
measure jitter of period starts.
Preemption Latency: We start two threads, a low-priority
one and a periodic high-priority one, which perform no
computation. In the low-priority non-periodic thread we re-
peatedly get the current time. Once the high-priority thread
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Figure 3. Ovm Startup Latency.

is scheduled, it gets the current time. We are interested in
measuring the time interval between these times as it ap-
proximates the preemption latency.
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Figure 4. Boeing RTSJ Latency benchmarks.

Yield Latency: Two threads with the same priority are
started. The first one repeatedly gets the current time and
yields. The second thread gets the current time once it is
scheduled. We measure the interval between the first thread
yields and the second thread is scheduled.
Synchronization Latency: n threads are started and each of
them tries in a loop to enter a synchronized block. In each it-
eration, we get the owner of the lock and the time of acqui-
sition. The synchronization latency is measured as the time
interval between the time the previous thread left the syn-

chronized block and the time the next thread entered the
synchronized block.
Priority Inheritance Latency: We start n lower-priority
threads with priorities 1, ...,n, and we usen differ-
ent locks. We also start a mid-priority and a high-priority
thread. The lower-priority threads are started in the way that
a thread with a priorityi is waiting for a thread with prior-
ity i − 1 to release a lockli. But none of those threads are
in fact scheduled, since they are blocked by mid-priority
thread. We measure boost/unboost times.
Overall the Ovm latencies are in line with those observed in
the jTime VM running on Timesys Linux. Preemption la-
tency is much better in Ovm as context switches are per-
formed within the VM and are lightweight and jTime must
call into the OS.

3.2.4. The effect of poll-checks.Compiler inserted poll-
checks are essential to Ovm’s scheduling infrastructure.
Poll-checks are the only points in the program code where
scheduling actions can occur. The benefit of this approach
is that it simplifies the implementation of synchronization
primitives. The downsides are (i) performance overhead,
both from the time spent executing the poll-check and from
compiler optimizations impeded by their presence, and (ii )
potential increase in latency. Latency may increase if there
is a long span of code without poll-checks. While the code
runs, interrupts received will be deferred. To help develop-
ers understand the nature of latencies due to poll-checks,
Ovm includes a profiler that produces a distribution of
interrupt-to-poll-check latencies. Fig. 5 includes such a dis-
tribution for the PRiSMj 100X scenario. Other benchmarks
exhibit similar behavior. It is easy to see that the current im-
plementation of poll-checks is unlikely to have an adverse
effect on latency.
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Figure 5. Distribution of poll check latencies for
the PRiSMj 100X scenario. Poll-check latency is
the time between an interrupt and a poll-check that
services that interrupt.

To estimate the impact of poll-checks on throughput, we run



Ovm on SpecJVM98 with all poll-checks deactivated. See
Fig. 6 for percent overheads measured for poll-checks in
the Spec benchmarks. The overheads were computed based
on the median of 20 runs with and without poll checks.
All benchmarks exhibit under 10% overhead. Thejavac
benchmark actually runs slightly faster with poll checks ac-
tivated.
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Figure 6. Percent overhead of poll checks in
SpecJVM98 benchmarks. In this graph, 0% over-
head indicates that enabling poll checks did not
slow down the benchmark.

3.2.5. Effectiveness of optimizations.When building an
Ovm image for an embedded system, we require develop-
ers to provide all Java sources in advance as well as a list of
all reflective methods that may be invoked. This information
is used to by the optimizing compiler to improve code qual-
ity. We give the example of two applications, PRiSMj and
RT-Zen (both are described later). Fig. 7 gives the size of all
components that can potentially go into an image: the appli-
cation source code, the JDK classes, the source code of the
virtual machine and the implementation of the RTSJ.

LOC Classes Data Code

Boeing PRiSMj 108’004 393 22’944 KB 11’396 KB
UCI RT-Zen 202’820 2447 26’847 KB 12’331 KB
GNU classpath 479’720 1974
Ovm framework 219’889 2618
RTSJ libraries 28’140 268

Figure 7. Footprint. Lines of code computed over-
all all Java sources files (w. comments). Data/Code
measure the executable Ovm image for PPC.

The compiler performs a Reaching Types Analysis to dis-
cover the call graph of the application and in the process
prune dead methods and dead classes. The result are shown
in Fig. 8. The number of classes loaded refers to the classes
that are inspected by the compiler (the majority of classes

are never referenced by the application). The number of
classes used is the number of classes that are determined
to be live, i.e. may be accessed at runtime. The number of
methods defined is the sum of all methods of live classes.
The number of method used is the subset of those meth-
ods which may be invoked. Methods that are not used need
not be compiled.

classes methods call casts
loaded/used defnd / used sites (devirt) (removed)

RTZEN 3266 / 941 20608 / 9408 67514 (89.7%) 5519 (37.7%)
PRiSMj 3446 / 953 13473 / 6616 46564 (89.8%) 73408 (96.9%)

Figure 8. Impact of compiler optimizations.

Finally, Fig. 8 measures the opportunities for devirtualiza-
tion and type casts removal. In Java, every method is vir-
tual by default, we show that in the two applications at hand
90% of call sites can be devirtualized. Type casts (e.g.in-
stanceof) are frequent operation in Java. The compiler is
able to determine that a large portion of them are superflu-
ous and can be optimized away.

3.2.6. Application level benchmarking. RT-Zen is a
freely available, open-source middleware component devel-
oped at UC Irvine and written to the RTSJ API’s. The sys-
tem is about 50,000 lines of code. For this experiment, we
use an application which implements a server for a dis-
tributed multi-player action game. The application allows
players to register with the server, update location informa-
tion, and find the position of all of the other players in the
game. RT-Zen has a pool of worker threads that it uses to
serve client requests. In our experiment, we have imple-
mented a small server for a multi-player interactive game,
the application runs with a low priority and a high prior-
ity real-time thread. Fig. 9 reports on the time taken to
process a request.
The jitter for the high priority thread is approximately 7
milliseconds, this is almost entirely due to interaction be-
tween the two threads. Both of them try to acquire a shared
lock and priority inheritance kicks in when the low prior-
ity threads cause the high priority thread to block. When
the same benchmark is run without synchronization, as one
would expect, the jitter on the high priority thread disap-
pears.

4. Experiences Implementing the RTSJ
Each of the real-time programming areas addressed by the
RTSJ presents its own implementation challenges to the
VM. Ideally the implementation of different aspects of be-
havior would be essentially independent, and allow modu-
lar composition of system services. In practice this is not the
case and in particular memory management and support for
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Figure 6: RT-Zen Results. Comparing the response time for a game server running on top of a
Real-time Java CORBA implementation. There are two thread groups (low and high) handling 300
requests each. The y-axis indicates the time taken by the application code to process the request.
Lower is better.

RTSJ also poses some unusual challenges for the garbage collector. During GC, the bootimage
and scoped memory must be walked to find and update pointers into the heap. But, no-heap
realtime threads may mutate these memory areas while the GC runs. In the worst case, a no-heap
thread may overwrite a pointer into the heap with a pointer into scoped memory. Ovm accounts for
this possibility by updating pointers from the bootimage and scope with a compare and exchange
instruction. The result of the compare and exchange is ignored. If the update failed, at worst, the
garbage collector copied a free object into to-space.

3.5 Benchmarking and Measurements

RT-Zen is a freely available, open-source, middleware component developed at UC Irvine and
written using the Real-time Specification for Java. For this experiment, we use an application
which implements a server for a distributed multi-player action game. The application allows
players to register with the server, update location information, and find the position of all of the
other players in the game. RT-Zen has a pool of worker threads that it uses to serve client requests.
In our experiment, a worker thread has one of two priorities: high or low priority.

We have used Ovm to prototype JVM extensions such as Preemptible Atomic Regions. Pre-
emptible Atomic Regions (PARs) are alternative to priority inheritence: a thread is optimistically
allowed to enter a PAR, but a thread executing within a PAR will be rolled back to the start of
the region if a higher-priority thread becomes runnable. Code within a PAR may alter the heap
in arbitrary ways and appears to execute atomically. The PAR-enabled Ovm logs each write that
executes within an atomic region. We implement this logging using Ovm’s bytecode rewriting and
static analysis framework. We implement logging through program specialization: code that exe-
cutes within an atomic region performs logging unconditionally, while code that executes outside an
atomic region pays no overhead for logging. Because Ovm specializes code based on the program’s
call graph, specialization does not double code size.
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Figure 9. RT-Zen Results. Comparing the re-
sponse time for an application running on top of
a RTSJ CORBA ORB. Two thread groups (low and
high) handle 300 requests each. The y-axis indi-
cates the time to process a request.

NoHeapRealtimeThread objects infects much of the VM de-
sign. The following sections discuss some of the more inter-
esting implementation issues and how we dealt with them.

4.1. Priority Scheduling
Priority scheduling is not enforced by traditional operat-
ing systems, which generally employ time-sharing or time-
sliced based preemption models. These models are fair in
a general sense but unsuitable for real-time systems be-
cause of the need to ensure higher priority threads always
run in preference to lower priority ones. Priority preemp-
tive scheduling is typically provided in commercial real-
time operating systems, and may be available as an option
for other operating systems that support the POSIX Real-
time Extensions, like Linux, but often only when executing
as the superuser.
While it had been the intent to make Ovm work with a
native threading model, the initial use of the user-level
threading model quickly demonstrated how easily real-time
scheduling requirements could be implemented in Ovm in-
dependently of the operating system. This freed Ovm from
any dependency on commercial real-time operating sys-
tems, or the need for privileged execution rights (where an
errant real-time thread could easily hang an entire machine
and necessitate a hard reboot!). Additionally, the scheduling
requirements of the RTSJ need not match those provided
by an OS. For example, they may differ on how a yield-
ing thread is replaced in the ready queue: the RTSJ says it
goes to the tail of the set of threads with the same prior-
ity, while the OS scheduler might place it at the head. If the
VM uses native threads on such a system then it will have to
take additional steps to ensure that the RTSJ execution se-

mantics are adhered to. For Ovm, user-level scheduling al-
lows us to easily implement any semantics required by the
RTSJ.
The use of real-time Ovm on a non-realtime operating
system, achieving real-time execution characteristics, was
demonstrated in its use on the payload board of the ScanEa-
gle. This single-processor embedded computer board ran
Ovm as the single non-system process, with only minimal
operating system services running.

4.2. Priority Inheritance
The Priority Inheritance Protocol (PIP) is well known in the
real-time literature as a means of bounding priority inver-
sion. It is also an optional component of the POSIX Real-
time Extensions and supported by many commercial real-
time operating systems. However, support for PIP is harder
to find on non-real-time operating systems, even those that
support priority scheduling. Further, the POSIX specifica-
tion for how priority inheritance operates is unclear on the
interaction between priority inheritance and the explicit set-
ting of priority values, allowing for differences in how a par-
ticular implementation behaves.
So again, the use of user-level threading in Ovm allowed us
to easily implement the PIP as required by the RTSJ with-
out any reliance on operating system support.

4.3. Scoped Memory
The RTSJ identifies three different kinds of memory that
can be used: heap, immortal and scoped memory. Scoped
memory operates using a reference counting scheme such
that when no thread is actively using a scope, the scope can
be cleared of objects and reclaimed. As scopes can be re-
claimed it is essential that no references to objects in a scope
are stored in variables (fields or array elements) that have
a longer lifetime than the object being referred to. Other-
wise, when the scope was reclaimed the reference would be
left “dangling”. This requires that all stores to variables be
checked at runtime to ensure that they are allowed.
A further runtime check is needed when variables are
loaded to ensure that aNoHeapRealtimeThread does not
acquire a reference to a heap allocated object. These
two runtime checks can have a serious impact on perfor-
mance, so there is a strong motivation to make the checks as
fast as possible, and to find ways to elide the checks when
it is safe to do so. In Ovm both kinds of runtime memory
checks execute in constant time and involve simple compar-
isons. Ovm divides memory into three slices: one for heap,
one for immortal and one from which all scoped mem-
ory will be allocated. With heap in the top slice, a heap
check simply involves comparing the address held in a ref-
erence with the address of the bottom of the heap.
Scope store checks are more complicated. The RTSJ re-
stricts use of scopes such that one scope can only ever be



entered from a single other scope. This is known as thesin-
gle parent rule. The effect of this rule is that a safe store re-
quires that the destination variable exist in a child scope of
the scope in which the referenced object is allocated. All of
the scopes that are in use at any moment at runtime form
a tree, that is rooted in a conceptual object known as the
primordial scope. By carefully assigning upper and lower
bounds to each scope in the tree, such that a child’s range
is a subrange of the parent’s range, then a scope check con-
sists of finding the scope in which the destination variable
and the target object exist, and checking that the destination
range is a subrange of the target. The resulting check op-
erates in constant time and requires two comparisons. This
technique was adapted from a similar technique used for
identifying subtype relationships in Ovm [12].

4.4. Garbage Collection
The RTSJ does not require real-time garbage collection, so
the garbage collector in the VM can use whatever tech-
niques are normally available. However, the garbage col-
lector can not be implemented without consideration of
the other parts of the memory system and the existence of
NoHeapRealtimeThread objects.
First, the additional immortal and scoped memory areas
must all be considered GC roots (though there is an op-
timization to ignore a scope that has only been used by
NoHeapRealtimeThread objects). Second, the garbage col-
lector (depending on type) has to be aware that a field that
held a reference to a heap object when the GC started, may
not hold a heap reference late in the GC pass, due to the ac-
tions of aNoHeapRealtimeThread. This is particularly an
issue for copying collectors that move an object during GC
and then go through and fix up all references to the ob-
ject. For immortal memory this can be fixed by using an
atomic compare-and-set operation that only updates the ref-
erence if it hasn’t changed (a reference field that exists in
immortal memory can only be changed by aNoHeapReal-
timeThread to either contain a reference to an immortal ob-
ject, or null). For scoped memory it is a little more com-
plicated. Between the time that the GC sees a heap refer-
ence and goes back to update it, the scope could have been
reclaimed and reused. So the address that previously held
a reference may now be a completely different type, but
might coincidentally hold the same value. This can not be
detected by using a compare-and-set operation (and is the
commonly known ABA problem). In this case the GC must
be informed that the scope has been reused and should be
ignored.

4.5. Real-time Scope-aware Class Libraries
The general Java class libraries provided by proprietary vir-
tual machines, or created by projects such as GNU Class-
path (which is used by Ovm), are not written to support real-

time. At the simplest level this often means that they don’t
have sufficiently predictable performance characteristics to
be used by real-time, especially hard real-time, threads. An
additional failing, however, is that many classes will cause
store check failures if instances of those classes are used
from scoped memory. There are two common programming
techniques that typically result in these failures: lazy initial-
ization and dynamic data structures. Lazy initialization de-
lays the creation of an object until it is actually needed. For
example, if you create aHashMap you can ask it for a set
that allows access to all the keys or values in the map. This
set is typically a view into the underlying map and is only
created when asked for. But when it is created the reference
is stored so that later requests for the view simply return
the same object and don’t create another one. If the orig-
inal map is created in heap or immortal memory, and the
set is first asked for when executing within scoped memory,
then the set will be created in scoped memory. The attempt
to store a reference to the scope allocated set into the heap or
immortal allocated map, will then fail. Dynamic data struc-
tures grow (and shrink) as needed based on their usage. If
a linked list allocates a node object for each entry added to
the list, then adding to an immortal allocated list from scope
memory will require linking an immortal node to a scoped
node. This is not permitted so the attempt will fail.
We must either accept these limitations and work within
them in our applications, or else rewrite libraries to ensure
they always change to an allocation context that is compat-
ible with the main object. Such changes however are detri-
mental to the performance of non-real-time code that also
uses the libraries; and represent significant development ef-
fort. A third option may be to define a real-time library that
contains a subset of the general library classes, written to be
predictable, scope-aware, and perhaps even asynchronously
interruptible.

5. The PCES Experiments
In the design of the test experiments both small scale pro-
totypes and full-scale prototypes were considered. Small-
scale prototypes provide an early indication of the predicted
behavior of a full-scale system. Unfortunately, costly prob-
lems sometimes occur when these prototypes are extrapo-
lated to large-scale systems. Potential problems include un-
expected increases of execution times and memory utiliza-
tion. On the other hand, full-scale systems can require a sig-
nificant amount of manpower to develop.
To balance these forces, various size scenarios were devel-
oped by combining a number of slightly modified small-
scale test scenarios into larger scale scenarios with the
aid of automation tools. This collection of scenarios pro-
vided sufficient test coverage for predicting the behavior
of a full-scale mission critical embedded system at re-
duced development costs. Leveraging technology from the



DARPA Model-Based Integration of Embedded Software
(MoBIES) program [13], allowed for rapid development
of large scale scenarios. MoBIES program products in-
cluded a component-based real-time Open Experiment Plat-
form (OEP) and associated development tool set with well-
defined XML based interfaces. For benchmarking purposes,
a modified version of a MoBIES Product Scenario with os-
cillating modal behavior was selected. This product sce-
nario has been identified as the “1X” scenario and is illus-
trated in Fig. 10. The original version provided use of three
rate group priority threads (20Hz, 5Hz, and 1Hz), event cor-
relation, and modal behavior.
Larger-scale scenarios were created incrementally by du-
plicating component classes and instances from the 1X sce-
nario. For example, a 20X scenario was created by dupli-
cating the eight application component instances above the
Physical Device layer twenty times. In addition to dupli-
cating component instances, component types were also in-
creased via a simple copy/renaming approach to also scale
the associated code base. The 100X scenario contains a rep-
resentative number of components and events in a typical
single processor avionics system, while executing within a
representative multi-rate cyclical context, and is therefore
used to evaluate success criteria. Success criteria is based on
Boeing’s experience with mission critical large scale avion-
ics systems. Fig. 11 illustrates the flight configuration.

5.1. Experiments
Experiments were run on flight hardware used on the
ScanEagle UAV: an Embedded Planet PowerPC 8260 pro-
cessor running at 300MHz with 256Mb SDRAM and 32 Mb
FLASH. The operating system is Embedded Linux. An il-
lustration of the 1X modal scenario is shown in Fig. 12. The

The Boeing Company  Program Composition for Embedded Systems II Final Report

A - 3

Larger-scale scenarios were created incrementally by duplicating component
classes and instances from the 1X scenario. For example, a 20X scenario was
created by duplicating the eight application component instances above the
Physical Device layer twenty times as depicted in Figure 2. In addition to
duplicating component instances, component types were also increased via a
simple copy/renaming approach to also scale the associated code base.

Physical
Device Layer

1 Hz:  Mode Change

Low Priority

20 Hz; Tactical Steering

High Priority

5 HZ: Steering Point

Medium Priority

tacticalSteering
Modal

navDisplay :
Display

navSteering :
Modal

navSteeringPts:
Passive

navigator:

PushDataSource

pilotControl :
ModeSource

GPS :
Device

OR
Correlation

airframe :
LazyActive

AND

Correlation

Full Channel

Events

8. Push( ) 15. Push( )

12.Push( )

6. Push()

7. Push()
18. Set( )

19. Set( )

11. Push()

14. Push( )

10. SetData1( )

13. SetData2( )

17. Push( )

16. Push( )

5. Push()

9. Push()

Infrastructure

 Layer
frameController :
FrameController

Full Channel
Events1. Push( )

2. Push( )
3. Push( )

4. Push( )

device1 :
Device

device4 :

Device

device2 :

Device

device3 :

Device

Application

 Layer

Figure 1: RTJES Modal 1X ScenarioFigure 10. The overview of the Boeing PRiSMj 1X
scenario.

Figure 11. ScanEagle Flight Product Scenario
RTSJ Architecture.

test results indicated low jitter in the order of 10’s of mi-
croseconds and provided the expected behavior as demon-
strated previously with the reference implementation on the
desktop.
The Purdue University Ovm implementation was the first
Real-Time Java application to qualify on the flight hard-
ware. Other implementations considered included jTime,
which did not support PPC, and jRate and Flex, but these
could not be made ready in time. The 100X scenario test
was used for the formal testing. The success criteria was
that the variability in the initiation of periodic processing
frames shall not exceed 1% of the associated period. For ex-
ample, during the 50 millisecond period, the maximum al-
lowable jitter is 500 microseconds. The jitter measured at
approximately 100 microseconds during the 50 millisecond
period. This was well within the 1% success criteria. The re-
sults are illustrated in Fig. 12.

6. ScanEagle Flight Demonstration
Ovm was used as the Java Virtual Machine for the Real-
Time Java Open Experiment Platform in demonstrations at
Chicago in June 2004; St. Louis, for a ground demonstra-
tion in December 2004; and White Sands Missile Range,
NM, for the capstone demonstration in April 2005.

6.1. ScanEagle Flight Product Scenario
The flight product scenario was added to the OEP in order
to support the ScanEagle flight demonstration using a real
avionics asset. The ScanEagle using the Ovm was desig-
nated as the Reconnaissance UAV (RUAV). This ScanEa-
gle’s main function was surveillance of real-time targets
during the mockup mission. The flight product scenario
was responsible for providing autonomous auto-routing and
health monitoring by (1) communicating with the flight con-
trols card, (2) computing navigational cues for the flight
controls based on threats and no fly zone data from the
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Figure 12. Response times of 100 threads split in three groups (high, medium, low) on a modal workload. The
x-axis shows the number of data frames received by the UAV control, the y-axis indicates the time taken by by
a thread to process the frame in milliseconds. (on flight hardware)

ground station, and (3) computing performance monitoring
information to be transmitted to the ground station for real-
time observation of jitter and priority processing. Synchro-
nized communication with the flight controls was deemed
as the most important mission critical function. This com-
munication was assigned to highest priority and executed at
a periodic rate of 20Hz. The navigational cue computation
was deemed mission critical but not at the same level as the
flight controls communication. The navigational cue com-
putation was assigned a medium priority and computed at
a periodic rate of 5Hz. The lowest priority was assigned to
the computation of the performance data. This data was sent
to the flight controls in the form of pass through messages
and computed at a periodic rate of 1Hz. The flight prod-
uct scenario is illustrated in Fig. 11. The italic yellow boxes
are the RTSJ classes that were used during the demonstra-
tion.
A similar flight product scenario was developed using a
C++ implementation. The ScanEagle using C++ was desig-
nated as the Tracking UAV (TUAV). This second ScanEagle
was responsible for tracking a moving target. For this flight
product scenario, the C++ code referenced the TimeSys
real-time library functions in order to achieve the real-time
performance.

6.2. ScanEagle Qualification Test
Before the mission computers could be flown, the software
and hardware had to pass qualification. Both EP8260’s, one
loaded with the RUAV and the other the TUAV, along with
the Serial UDP Bridge, had to pass the test specified by The
Insitu Group. Each EP8260 was tested individually.
During February 2005, the on-board mission computer and

ground base C2 systems were integrated with ScanEagle
flight controls and ground station. The mission computer at-
tached to the ScanEagle flight controls board, and the two
communicated through a serial connection. The C2 system
connected to the ScanEagle ground station through another
serial connection. The ground station would pass appro-
priately formatted messages to the flight controller which
would again check the message before passing it on to the
mission computer. The mission computer would commu-
nicate with the C2 system by traversing the same path in
the opposite direction and with the flight controls just over
the direct serial connection. The integration effort was spent
getting the hardware and software to accept appropriately
formatted messages at the data rates that the information
was supplied.
With a fully communicating system, ground qualification
testing could commence. Insitu and Boeing had to demon-
strate that adding the mission computer would not interfere
with the flight controls in a way that the ground operator
could not reassume control. The primary concerns were that
a mission controller message would corrupt the flight con-
trols or that the mating of the mission controller board to
the flight controls board would cause a physical problem.
To qualify the message traffic, the mission computer was in-
stalled into the hardware-in-the-loop test bed. The test bed
was initialized using the ScanEagle standard operating pro-
cedure for pre-flight and take-off. Once the test-bed as in
flight, the mission computer was turned on. Since the flight
demonstration script was complete, the first test was to ver-
ify that the message traffic necessary to complete the script
would not cause a problem. After completing that test, the
test conductors, Insitu’s head of software development and
head of flight operations, requested a random sequence of



messages be sent. Testing continued with intermixing ran-
dom messages, expected message sequences, and turning
the board on and off. The test was successfully passed af-
ter both test conductors signed off on the experiment.
With the electronic qualifications complete, the boards were
removed from the test bed and placed in the aircraft that
were going to be used for the flight demonstration. One
of the planes was taken out to a test facility for a physical
check of the system. After the plane was subjected to sim-
ulated forces in flight, the plane was returned for additional
electronic tests. The whole electronic system was tested to
make sure the system could still execute during the demon-
stration. After passing both the electronic and physical test,
the plane was qualified for flight tests.

6.3. ScanEagle Flight Test
On February 26, 2005, the Reconnaissance UAV (RUAV)
and Tracking UAV (TUAV) were taken to the Boe-
ing Boardman Test Facility to conduct flight tests. The first
plane to fly was the RUAV. After a ground check of the sys-
tems, including the mission computer, the plane was
launched. After the plane reached the preplanned re-
connaissance route, the standard sequence of events
was sent to the mission computer. Each step was al-
lowed to complete before sending the next command.
After successfully completing the test, the mission com-
puter was turned off, and a test was conducted by The In-
situ Group for a new part on the plane. Once the RUAV
landed, the same ground tests were conducted on the TUAV,
and it was launched. The only difficulty experienced dur-
ing the flight tests was with the laptop used for the Serial
UDP Bridge for the TUAV. The computer acted errati-
cally during the pre-flight check and was replaced before
the launch. In the end, all of the qualification tests re-
sulted in a smooth, successful flight test.

6.4. Capstone Demonstration
On April 14, 2005, the live PCES Capstone Demonstration
was conducted at White Sands Missile Range (WSMR).
The demonstration consisted of a net centric demonstration
of multiple kinds of systems distributed over a wide area,
and networked together. Two live ScanEagles and four sim-
ulated ScanEagles with insufficient bandwidth to provide
streaming video for all assets were positioned on the north
end of the demonstration. The PCES program developed an
end-to-end QoS technology to make optimum use of lim-
ited bandwidth communications stretching 100 miles across
WSMR. The demonstration scenario started with multiple
UAVs in the air in reconnaissance followed by the appear-
ance of multiple pop up targets being prosecuted by the
PCES operations center commander who has the ability to
task UAVs and designate targets for track. Two of the UAVs
were live ScanEagles. The RUAV played the role of an asset

that has on-board autonomy supporting a variety of recon-
naissance modes in support of finding and assessing dam-
age of time sensitive targets, including support for real-
time monitoring of weapon strikes against surface targets.
The software on the RUAV hosted Real-Time Java technol-
ogy from the PCES program. The other ScanEagle was the
TUAV. The TUAV was responsible for tracking a moving
target and deploying a virtual weapon capable of destroy-
ing that target.

6.5. Evaluation
This milestone marked the first flight using the RTSJ on an
Unmanned Air Vehicle and received the Java 2005Duke’s
Choice Awardfor innovation in Java technology.
The Embedded Planet EP8260 on board mission computer
was integrated with ScanEagle flight controls in order to
insure the C++ and Real-Time Java software were ready
for flight. During this time, both applications needed sim-
ilar changes to the flight controls interface, so the benefits
and difficulties of working with each language were appar-
ent.
Converting the OEP code from C++ to Java was fairly
straight forward. The RTSJ extensions mapped well to the
fully developed in-house infrastructure features with mi-
nor wrapper modifications. For example, the event channel
service was developed with the underlying RTSJ Bound-
AsyncEventHandler class and the frame controller was de-
veloped with a periodic NoHeapRealtimeThread. Porting
the C++ code to the TimeSys Linux from VxWorks pre-
sented more of a challenge. In order to get acceptable de-
terministic performance, the C++ frame controller had to
be modified to use the TimeSys Linux specific real-time li-
braries instead of using the standard POSIX libraries. This
required some research and debugging to determine this so-
lution.
The development environment associated with the Java
code consisted of compiling bytecodes on a desktop and
connecting the desktop directly to the ground station via a
serial connection. On the C++ side, the software required
compilation on the desktop, perform initial unit testing on
the desktop, cross compilation for the target hardware, and
final testing on the ground station. These additional steps on
the C++ side were due to byte ordering differences in the de-
velopment x86 desktop environment and the PowerPC tar-
get platform environment combined with use of proprietary
libraries to communicate with the flight controls that pre-
vented global macro solutions. Also important to note that
compiling bytecodes was in the order of 10 times faster than
compiling C++ code. Thus during the majority of the inte-
gration, the C++ flight scenario product required more ef-
fort to prototype new functionality.
The C++ development suffered from tool incompatibilities.
Developer studio 6.0 was used for desktop C++ develop-



ment. Developer studio provides a rich set of development
and debug features. Unfortunately, developer studio is not
compatible with the target TimeSys Linux O/S. In order
to generate the target executable, the GNU g++ compiler
was selected. Unexpected compilation and executable er-
rors propagated to the target executable due to macro defi-
nitions (#DEFINE) not being set properly, missing precom-
piled headers, and accidental use of win32 specific libraries.
With the Java development, the Eclipse tool set was used.
Eclipse also provides a rich set of development and debug
features. In contrast, the same Eclipse tool could be used for
both the development and target environment thereby elim-
inating tool set incompatibility errors.

7. Conclusion
Overall our experience implementing and using the Real-
time Specification for Java was positive. The implemen-
tation of the virtual machine presented a number of chal-
lenges which were resolved. We uncovered some ambigu-
ities in the Specification which are being addressed in the
upcoming revision of the RTSJ. From the user’s perspec-
tive, the RTSJ extensions mapped well to the infrastructure
services already developed on Boeing avionics platforms.
Given the same constraints placed on large scale real-time
embedded C++ applications, the Ovm running RTSJ classes
provided comparable performance. In general, the Java lan-
guage itself offered better portability and productivity over
a traditional language such as C++. The main concern ex-
pressed was about the level of maturity of tools and vendor
support.
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