
A MULTIMETHOD-BASED ORTHOGONALLY

PERSISTENT PROGRAMMING LANGUAGE

Antonio Cunei

A dissertation submitted in partial fulfillment of the requirements

for the Degree of M.Sc. in Advanced Information Systems

at the University of Glasgow.

SEPTEMBER 2000

Acknowledgements

I would like to thank my supervisor, Prof. Malcom Atkinson, and the coodinator of the

course of M.Sc. in Advanced Information Systems, Dr. Richard Cooper. I would also like to

thank for their great work all those who spent their time end effort preparing all the aspects

of the M.Sc. in AIS course, selecting always the most updated and interesting material and

teaching with passion and enthusiasm.

I am grateful to all the friends and people that I met in Glasgow for their support and

friendship, and in particular I would like to thank Tony Printezis and Huw Evans for their

precious suggestions, and Chantelle MacPhee for her invaluable help.

This work has been made possible by a studentship offered by the Engineering and Phys-

ical Sciences Research Council.

Abstract

Orthogonal persistence allows data to persist for an indefinite amount of time, and to be

manipulated in a uniform, consistent way regardless of its type. Despite the large amount of

research on orthogonal persistence and on programming languages, to the author’s knowl-

edge no programming language based on multimethods has ever been integrated with orthog-

onal persistence, offering an implementation capable of recovery. In this work, a language

definition which offers support for multimethods in the context of static and strong typing

will be introduced, and it will be shown, with a concrete implementation, how an orthogo-

nally persistent version of that language can be created. The working implementation, which

relies on technology developed in the University of Glasgow, gives full support to orthogonal

persistence, and the execution of the generated programs can be resumed after an unexpected

interruption.

Contents

1. Introduction 13

1.1. The Project . 14

1.1.1. The Language Compiler . 15

1.1.2. Sphere . 15

1.2. Overview . 16

2. Multimethods and Static Typing 17

2.1. Overloading . 17

2.1.1. Overloading vs. Dispatching . 18

2.2. Generic Functions . 19

2.3. Multimethods in Typed Languages . 21

2.3.1. The Multimethods Graph . 21

2.3.2. Resolving Ambiguities . 23

2.3.3. Return Values and Expressions . 25

2.4. Multiple Inheritance . 26

2.4.1. Instance Variables . 26

2.4.2. Inheriting Methods . 27

2.4.3. Resolving Ambiguities . 27

3. The Language 30

3.1. Introduction to the Language . 30

3.2. A First Example . 31

3.3. Class Definitions . 32

3.4. Declarations and initialisations . 34

3.5. Identifiers . 37

3.6. Instance Variables . 38

3.6.1. Parameters . 39

3.7. Encapsulation . 39

7

Contents

3.8. Nested Contexts . 40

3.9. Control Structures . 41

3.9.1. While . 41

3.9.2. If...elseif...else . 42

3.9.3. For . 42

3.9.4. Case . 43

3.9.5. Other Constructs . 43

3.10. Syntactic Tools . 43

3.10.1. Comments . 43

3.10.2. The Dot . 44

3.11. Operators . 46

3.12. Type Tunnels . 48

3.13. System Library . 50

3.13.1. Standard Classes . 50

3.13.2. Arithmetic Operations . 51

3.13.3. Comparison Operations . 51

3.13.4. Boolean Operations . 51

3.13.5. Standard Operators . 51

3.13.6. Input/Output Operations . 52

3.13.7. Other Functions . 52

3.14. Further Considerations . 52

3.14.1. Ensuring Coherence: Constructors 52

3.14.2. Instance Sharing and Side Effects 54

3.15. Parameters . 57

3.16. Dispatching . 59

4. Design 61

4.1. The Virtualisation Layer . 62

4.2. The Language Compiler . 66

5. Implementation Overview 69

5.1. The Virtualisation Layer . 69

5.1.1. Virtual Manager . 71

5.1.2. Physical Manager . 72

5.1.3. Backing Manager . 73

5.1.4. Class Manager . 74

5.1.5. Error Manager . 74

8

Contents

5.1.6. Abstraction Manager . 74

5.1.7. Map Manager . 75

5.1.8. Objects and Pages . 75

5.1.9. Automatic Checkpointing . 76

5.2. The Language Compiler . 78

5.2.1. Code Generation . 78

5.2.2. Runtime Support . 79

5.2.3. Standard Libraries . 80

6. Conclusions 82

6.1. Tests . 82

6.1.1. Language Tests . 82

6.1.2. Recoverability . 82

6.2. Possible Developments . 83

6.3. Evaluation and Conclusions . 84

A. Appendix 86

A.1. The Virtualisation Layer: User Interface 86

A.1.1. Types . 86

A.1.2. Functions . 87

A.1.3. Errors . 88

A.1.4. Customisation . 88

A.2. Test Programs . 89

A.2.1. File: BOH/test/test.first . 89

A.2.2. File: BOH/test/test.second . 90

A.2.3. File: BOH/test/test.ONE . 92

A.2.4. File: BOH/test/test.TWO . 97

A.2.5. File: BOH/test/test.THREE . 102

A.2.6. File: BOH/test/test.complex . 106

A.2.7. File: BOH/test/test.set . 110

A.2.8. File: BOH/test/test.rule . 113

A.2.9. File: BOH/test/test.tunnel . 115

A.2.10. File: BOH/test/test.recovery . 117

A.2.11. Compiled Code . 122

A.3. Language comparison . 127

A.3.1. SideEffect in Smalltalk . 127

A.3.2. SideEffect in Java . 129

9

Contents

A.3.3. SideEffect in BOH . 130

A.3.4. Identifiers in BOH: extended character set 131

A.3.5. Overloading vs. generic functions: Java 132

A.3.6. Overloading vs. generic functions: BOH 133

A.3.7. Methods with different return types in Java 134

A.3.8. Methods with different return types in BOH 135

A.3.9. Ambiguity in C++ . 137

A.3.10. Ambiguity in Java . 138

A.3.11. Ambiguity in BOH . 139

10

List of Figures

2.1. Extension on more dimensions of the class hierarchy 23

2.2. Multiple inheritance . 27

2.3. Extension of the class graph: multiple inheritance. 29

3.1. Standard classes . 50

3.2. Static resolution of multimethods . 60

4.1. The new system structure . 61

4.2. Modifications required by the compiler . 67

5.1. Pointer swizzling at page fault time . 70

5.2. Virtualisation Manager . 72

11

1. Introduction

Writing computer programs is, in general, a rather complex activity. Often large amounts of

data and code have to be managed, and many techniques have been developed to structure

both in ways that could simplify and make more efficient both the programming activity and

the treatment of data. The introduction of object oriented programming, for instance, has

been, for many, a turning point in the evolution of design and implementation of computer

systems, changing at the core the way in which computer programs are written and data is

organised.

Among the many technologies that have been introduced over time to simplify the ma-

nipulation of data, a very interesting one is orthogonal persistence[AM95][ABC
�

83]. The

main idea which is promoted by the technique is that all data should be treated in a single,

uniform manner and should be allowed to persist in the system for an indefinite amount of

time, regardless of its type. That means that the programmer does not need to deal with sep-

arate models for the treatment of data in memory, on mass storage and so on. Furthermore,

the semantic of operations is unique, regardless of the specific kind of data manipulated.

The obvious result is a great simplification of program structure, and less burden for the

programmer. An additional advantage is that, since the actual transfer of data between mem-

ory and mass storage is completely demanded to the system, it is possible to organise, in a

transparent way, the migration of data in a distributed environment. Since all data movement

is under system control, it becomes easier to implement a recoverable system, which offers

protection against unexpected system failures, power losses and so on. Many orthogonally

persistent systems have been developed, mainly programming languages [ADJ
�

96], but also

entire operating systems [DdBF
�

94a][VRH93]. One of the most natural ways to support

orthogonal persistence is to use objects, which offer a simple way for the system, as well

as for the user, to manipulate units of data. If objects are used, the best way to match the

requirement, imposed by orthogonal persistence, that all data is handled in a uniform way,

is to use a “pure” object oriented language, in which all data is treated uniformly as objects.

The question remains which other technologies or mechanisms, used in other object oriented

languages, can be included in an orthogonally persistent language.

13

1. Introduction

The use of multimethods will be here proposed for inclusion among the characteristics

that can be integrated in an orthogonally persistent language. Multimethods represent a

natural extension of the common message dispatching technique, used in conventional ob-

ject oriented languages, to more than one receiver. The idea is not new, and it is mainly

known for its inclusion in the Common Lisp Object System (CLOS[Clo][Dal97]); how-

ever, multimethods have been used mainly in dynamically typed languages, and their use in

statically typed languages has remained marginal. Among the few which offer static typ-

ing are Cecil[Cha93], BeCecil[CL96], Dylan[App95], Kea[MHH91], Polyglot[ADL91] and

Tigukat[Leo99]. To the author’s knowledge, only Cecil and Dylan have a working com-

piler, and no multimethod-based language have been integrated with orthogonal persistence,

offering an implementation capable of recovery.

In this report, a language definition which offers support for multimethods in the context

of static typing will be introduced, and it will be shown, with a concrete implementation,

how an orthogonally persistent version of that language can be actually created. The working

implementation, which relies on technology developed in the University of Glasgow, gives

full support to orthogonal persistence, and the execution of the generated programs can be

resumed after an unexpected interruption.

In order to follow the content of the discussion, the reader should have a fair knowledge

of use and implementation of object oriented languages and a general idea of the techniques

used to implement orthogonally persistent systems. Many useful references are available

in literature on both subjects[AMB95][Bea94][PC93]. Some previous knowledge of multi-

methods is advantageous, although the main ideas and the techniques used in the definition

of the language are illustrated in Chapter 2.

1.1. The Project

The main purpose of the project is to show that multimethods, in the context of a statically

typed language, are one of the elements that can be included in an orthogonally persistent

language. A language based on multimethods and statically typed was already designed and

implemented by the author, but, despite the fact that orthogonal persistence was one of the

main ideas behind the language design, the test implementation was entirely memory based,

and did not offer support for recovery. On the other hand, a versatile and highly efficient

general purpose object store, Sphere[PAD98], has been developed at the University of Glas-

gow, and has been used extensively to support the PJama system[AJ99]. The logical step

to obtain a multimethod based, orthogonally persistent language, was therefore to bring to-

gether the two elements, writing suitable additional code. The resulting system is a compiler,

14

1. Introduction

with the related runtime support, for a multimethod based, strongly and statically typed lan-

guage which integrates orthogonal persistence and whose running programs are capable of

resuming execution if interrupted for whatever reason. A summary of the previously existing

software components follows.

1.1.1. The Language Compiler

The preexisting implementation of the language compiler is composed by a set of programs

written in C/C++, with the help of the well-known utilities lex and yacc. The compiler

produces, as target code, a source file written in C which can be compiled by GCC to produce

the final executable. The choice of the intermediate use of the C language was primarily due

to the need of reducing the total development time and enhancing the portability of the test

implementation of the compiler. In particular, the high-level features of the C language are

not used, and the translation process has a logic similar to the one needed to produce low

level assembler code.

The resulting programs are memory based, and the Boehm-Demers-Weiser conservative

garbage collector[Boe93] is used to dispose the unused memory automatically. The imple-

mentation showed the viability of the overall architecture of the language, although it did not

offer any information about the aspects related to orthogonal persistence and recoverability.

1.1.2. Sphere

Sphere is a high performance, general purpose, recoverable object store developed at the Uni-

versity of Glasgow. Its recovery mechanism is based on the ARIES[MHL
�

92] write-ahead

logging technique, and the size of the store managed can be considerably large – Sphere

has been used in real-life bioinformatic applications to handle amounts of data as large as

5GBytes. The system uses an efficient object promotion algorithm which allows to obtain

high performances during the checkpoint operation. It includes support for evolution and is

designed to accomodate different strategies for the storage of objects as compacting, com-

pressing etc. Although Sphere has been used primarily in the implementation of the PJama

programming environment, its design offers general purpose support for orthogonal persis-

tence, and useful primitives are available to implement efficiently all the common operations

required by a typical orthogonally persistent system.

15

1. Introduction

1.2. Overview

The work describes two main aspects: the language definition and the newly written interface

with the store. The first part is covered by Chapters 2 and 3. Chapter 2 describes the rationale

behind the language definition, and in particular how multimethods can be used in a statically

typed context and the techniques that have been used in the construction of the type system

for the language. Chapter 3 discusses the language definition, offering useful hints about

how such a language can be implemented efficiently.

The second part, the way in which the compiler has been adapted to the object store, is

described in Chapters 4 and 5. Chapter 4 offers an overview of the design process of the in-

terface layer between the compiler and the store, and the way in which the existing compiler

had to be changed. Chapter 5 reviews at a high level the implementation of that intermediate

layer and the modifications that were required by the compiler, that is the work that has been

done more recently. The description of the detailed way in which the compiler was imple-

mented has been intentionally left out, since the related work was done in another context.

Chapter 6 concludes the dissertation with a summary the results obtained and possible future

developments.

16

2. Multimethods and Static Typing

The main purpose of this project is to show how multimethods can be integrated seamlessly

at the core level in the definition of an orthogonally persistent language. A short review of

multimethods and static typing, together with the approach that has been followed during the

definition of the language, will be therefore presented during this chapter. The analysis of

multimethods and their implication will be not exaustive, neither will it discuss all the aspects

related to the issue from a formal point of view. The aim of the discussion will be, instead,

to give a general idea of the behaviour of multimethods when used in typed languages, and

why they can be useful. In the chapter, the notation “ f un
�
C1 � C2 ��������� Cn � : C” will be used to

refer to a function whose return value has type C, and whose parameters have type C1 ��������� Cn.

This concise notation is similar to that used for function protypes in ANSI C [KR89].

2.1. Overloading

In traditional programming languages, a technique commonly used to simplify the use of op-

erations conceptually similar is to “overload” symbols. This refers to the possibility, given

to programmers, to use a single identifier to refer to more than one function or procedure,

which differ in the number and/or type of their parameters. In most languages, the symbol

“+” is used to refer both to the sum of two integers and to the sum of two floating point num-

bers. In that sense the symbol “+” is “overloaded” with more actual meanings, representing

different operations if used with different parameters. The detection which, among all the

available functions, will be invoked in a specific case is performed in this case statically, at

compilation type, checking which, among the function defined using that identifier, matches

exactly the number and type of the parameters used in that specific function call.

With the advent of object-oriented programming this way of proceeding has been re-

tained, and the use of overloading is found more or less unaltered in many object oriented

typed languages as C++, Java and others. However, the new type matching definition com-

monly used in those languages (inclusive polymorphism) makes the effects of overloading,

in this context, much less intuitive.

17

2. Multimethods and Static Typing

2.1.1. Overloading vs. Dispatching

In this example, we want to implement two classes, called “parent” and “child”, and a few

methods using Java.

class child extends parent {}

class parent

{

void direct(parent b) {

System.out.println(" : Called parent - parent");

}

void direct(child b) {

System.out.println(" : Called parent - child");

}

void indirect(parent b) {

direct(b);

}

public static void main(String av[])

{

parent p=new parent();

child c=new child();

System.out.print(p); System.out.print(p); p.direct(p);

System.out.print(p); System.out.print(c); p.direct(c);

System.out.print(p); System.out.print(c); p.indirect(c);

}

}

Here, two messages are defined, direct and indirect, which can be sent to instances

of the class parent. This is the output of the program:

parent@80caf4a parent@80caf4a : Called parent - parent

parent@80caf4a child@80caf4c : Called parent - child

parent@80caf4a child@80caf4c : Called parent - parent

In this example, the first two calls have, as a result, the execution of the most specific

method among those available. This conforms to the principle commonly used in object

oriented programming, in which it is possible to redefine part of the behaviour of a class

while defining a subclass, in order to obtain a description suitable for a specific case from

18

2. Multimethods and Static Typing

the more generic one. However, the result of the third call shows how the overloading can

interfere with this principle, causing behaviours that are difficult to forecast.

What happens is that, with the introduction of objects and classes, it is now possible that

more than one definition can match a single invocation, due to the very nature of inclusive

polymorphism. Since every instance of “child” is also, in a way, an instance of “parent”,

having a different list of types of parameters for each definition is no longer enough to select

a unique one for every invocation. Most statically typed object oriented languages work at

this point by reusing the class hierarchy to search for the most specific call applicable, but

the selection is done, in this case, only statically.1 In the second call, the second method

definition is recognised during compilation as being more specific, and therefore selected

as the best choice. In the third, however, the argument of the only available definition of

“indirect” is always “parent”, and the compiler selects therefore the first method (“parent-

parent”) in any case. In other terms, when passing through the “indirect” call the instance

c loses, somehow, part of its identity and is reduced to a more generic class. The method

called will therefore be the more generic one, whose implementation can differ significantly

from the more specific one. Clearly, to keep track of this sort of behaviour can be difficult

for the programmer, and, as a result, unconsistent operations or unexpected problems could

surface.

2.2. Generic Functions

An alternative approach is made possible by using multimethods, which are essentially noth-

ing more than the extension to more then one receiver of the usual message/method mech-

anism. The idea is to select the method not just considering a single receiver, but using a

tuple of receivers to select dynamically the most specific method for a specific invocation.

This may also help to model, more accurately, situations in which the use of a single receiver

might appear not to fit completely.

Considering the arithmetic sum in some pure object oriented languages (Smalltalk, for

instance), we find that the typical implementation defines the sum as a message to be sent to

one of the addends, with the second one as a parameter. There is a forced asymmetry in the

operation, due to the need of having, in any case, a single receiver; whereas, a more intuitive

way of proceeding would be to treat both addends equally, since they both participate in

the same way to the actual sum. In cases like this one, multimethods may allow a more

immediate computer representation of the reality we want to describe. The messages which

1Since methods having different types for their parameters are selected statically, they are actually treated by all
means by the compiler as being part of separate messages, and will be grouped accordingly for the purposes
of message dispatching.

19

2. Multimethods and Static Typing

correspond to a certain number of multimethods are often called “generic functions”, to

emphasise the fact that they look like “functions” which behave differently according to the

type of their parameters.

To show the different behaviour of the code in case multimethods are used, here is the

same example used previously, rewritten using the language that we are about to introduce.

Although the language syntax will be described in detail only later, its similarity with the

usual C++/Java style and the previous description of multimethods should make the code

easily understandable.

GenericVsOverload: uses system

{

!parent: super object {!parent(): super object() {}}

!child: super parent {!child(): super parent() {}}

direct(a:parent,b:parent)

{ println(" : Called parent - parent"); }

direct(a:parent,b:child)

{ println(" : Called parent - child"); }

indirect(a:parent,b:parent)

{ direct(a,b); }

main()

{

p:=parent();

c:=child();

p.print; p.print; p.direct(p);

p.print; c.print; p.direct(c);

p.print; c.print; p.indirect(c);

}

}

The program output, obtained using the compiler described in this work, is the following:

<parent><parent> : Called parent - parent

<parent><child> : Called parent - child

<parent><child> : Called parent - child

20

2. Multimethods and Static Typing

In this case, the result of the indirect invocation is identical to the direct one. In both

cases the most specific method available is called. The behaviour is homogeneous and there

is no longer trace of the unconvenient asymmetries due to the static nature of overloading.

According to this example, it is clear that multimethods can represent a very appealing al-

ternative to the traditional use of overloading in object oriented typed languages, offering a

versatile and intuitive instrument, suitable to model a range of problems that cannot be fully

described using messages restricted to a single receiver.

2.3. Multimethods in Typed Languages

In this section some ideas, similar to many others commonly found in literature, are pre-

sented with the purpose of ensuring that the set of multimethod definitions in a program are

consistent, and that no runtime error during message dispatching can ever occur, whatever the

class of the message parameters. Other suggestions are then made on avoiding ambiguities

while using multiple inheritance. The discussion is mostly informal, and its main purpose is

to introduce to the techniques used in the language. As a first step we shall describe how to

decide when a multimethod is “more specific” than another.

2.3.1. The Multimethods Graph

If inclusive polymorphism is used, an instance of a subclass of a given class C can be used

throughout the program whenever a variable is expected to be an instance of C. This leads,

for any occurrence of a variable or an expression, to the definition of two different types: a

static type, which can be determined at compile time as the most generic type that an ex-

pression is expected to have at that occurrence, and a dynamic type, which is known only at

execution time, which is the actual type of the value. The static type is used to perform the

static type checking, while the second is used to perform dynamically the message dispatch-

ing.

In the case of messages with a single receiver, the set of possible method definitions

for a given message matches the set of the classes, and the related hierarchy. If the class B

is subclass of A, a method defined in B will be “more specific”, since it can be used only

for instances of B, while a method defined in A can be used both for instances of A and B.

The relation “is more specific”, applied to possible method definitions, is isomorphic to the

relation “is subclass of” applied to classes.

With multimethods, for any given message of arity n there could be a definition of a mul-

timethod in correspondence of each tuple of n classes, suggesting immediately the structure

of the set to be used for the relation “more specific than,” applied to multimethods. The

21

2. Multimethods and Static Typing

intuitive concept behind the relation can be described more formally as follows:

� Given two n-tuple �A 	 �
A1 � A2 �������
� An � and �B 	 �

B1 � B2 ��������� Bn � , then
� �A � �B � belongs

to the relation if there is a j in � 1 ��������� n
 such that for every i 	 1 ��������� n, with i �	 j, Ai

is equal to Bi, while A j is a direct subclass of B j, that is
�
A j � B j � belongs to the relation

“is an immediate subclass of.”

This relation of “greater direct specificity” induces a partial order relation on the n-tuples

of classes, which can be used to determine whether an n-tuple is more specific than another

or not, either directly or indirectly. A look at the example shown in Figure 2.1 will help

clarify the way the construction works [the direction of the arrows is inverted with respect

to the relations here described]. It is clearly a straightforward generalisation on multiple

dimensions of the usual class. It has to be noted that if the original class graph was connected,

the derived one will be connected as well, and that if the former was not containing any

cycles, the latter will be similarly without cycles.

As is apparent from this example, even for very simple class hierarchies the derived graph

can contain multiple paths which connect two n-tuples of classes. This may lead to a series

of ambiguity problems not dissimilar to those found in all object oriented languages when

multiple inheritance is introduced. Some techniques useful to avoid ambiguities in methods

definitions will be detailed in the following section.

The simple construction shown allows us to perform a static typechecking even when

multimethods are used. For example, let us assume we have a class A and one of its sub-

classes B, and the following multimethods are defined:

fun(B,A)

fun(B,B)

In this case, if a call appears statically as fun(B,A), we know that there will be, in run-

time, at least one suitable multimethod for every combination of types of the parameters. On

the other hand, if the compiler encounters a call like fun(A,B), there is no guarantee that a

suitable method will be found during the execution, and the user can be therefore informed,

during the compilation phase, that a runtime error might occur – clearly a simple extension

of the basic technique commonly used by typed object oriented languages when a single

receiver is allowed.

22

2. Multimethods and Static Typing

A

CB

(a) Class hierarchy

AA

ABBAAC CA

BBBC CBCC

(b) Pairs of classes

AA

AB

AC

CA

CB

BA

BB

BC

CC

(c) Tridimensional view

Figure 2.1.: Extension on more dimensions of the class hierarchy

2.3.2. Resolving Ambiguities

The graph presented in the previous section allows the compiler to make sure that, whatever

the combination of types of parameters used for any given call, there will always be, during

execution, at least one suitable method. However, this is not enough to guarantee that the

most specific method applicable is unique. For instance, let us consider again the class A and

its subclass B, this time with the following method definitions:

23

2. Multimethods and Static Typing

fun(B,A)

fun(A,B)

A call which appears statically like fun(B,B) could be dispatched to both methods, since

neither is more specific than the other. It is clearly a case of ambiguity in the definitions. It

would be like defining two recipes to prepare a cake, one using strawberries and a generic

cream, and the other using generic fruit and custard cream. In the case in which we have

both strawberries and custard cream, none of the two recipies would be preferable a priori.

More generally, we have an ambiguity every time that, given a message, there is an n-tuple

for which there is no method defined, which is also simultaneously descendant from two or

more unrelated n-tuples, each with a different method defined. The ambiguity extends, then,

to all the descending n-tuples. To overcome the problem, it is therefore enough to detect

the “more general” tuple where a conflict is present, and impose, using an ad-hoc rule, that a

method definition must be present on that tuple as well. If multiple inheritance is not present,

in fact, it is easy to realise that for every set of methods which originate an ambiguity there

is one and only one of such “critical” tuples; each of its components is, for every index i, the

last subclass, with respect to the hierarchical relation among classes, of the set A i 	�� C j � i
 ,
where C j � i is the class of the formal parameter i of the method j. If the methods are conflicting

each set Ai must be in fact totally ordered. As a consequence, the following rule allows us

to detect ambiguities in the method definitions when single inheritance is used, and, more

importantly, to suggest to the user which steps to adopt to fix the problem.

� For every subset of the set of methods defined for a message (with the same identifier

and arity), whose parameters are of types
�
C j � 1 � C j � 2 ��������� C j � n � , IF for every i 	 1 ��������� n,

the set � C j � i
 is totally ordered with respect to the hierarchical reletion on classes,

THEN a method must be defined with parameters
���
C1 � �C2 ��������� �Cn � , where �C j is the last

element of � C j � i
 .

Interestingly, the same rule can be equally useful in both the static and the dynamic case.

From a dynamic point of view, it ensures that every call will have a single most specific

method to use; from a static point of view, it allows us to determine that a single most

generic method, among the set of those defined for a message, will be usable for every call.

That analysis, performed at compilation-time, can then be used to assign inductively a static

type not just to variables and parameters, but to arbitrary expressions.

24

2. Multimethods and Static Typing

2.3.3. Return Values and Expressions

As we have seen, using the rule previously defined, it is possible to determine, for each

call, a single most generic method definition which can be then used to perform static type

checking. The next step is to determine what should happen to the returned value, and if it

is possible to obtain some information on its static type. In general, in fact, every method

among those usable for a specific call could have a different definition of the type of its return

value, which would prevent us from statically determining a single limitation of the return

type of the function call. Fortunately, the uncertainty can be eliminated using the following

rule (covariance):

� For every pair of method definitions for same message f un
�
A1 � A2 ��������� An � : A and

f un
�
B1 � B2 ��������� Bn � : B, IF for every i 	 1 �������
� n Ai is equal or a subclass of Bi, THEN

A must be equal or a subclass of B.

The rule follows the intuitive behaviour that can be expected from messages: if a message

operates on A1 ��������� An returning A, it is reasonable to expect that all the matching methods

will work in the same way. Since every instance of B1 “is” (according to inclusive polymor-

phism) an instance of A1, and similarly for the other parameters, all the methods should return

an instance belonging to class A (or a subclass) for all the parameters of class A1 ��������� An (or

their subclasses). Consequently, if two methods had the same sequence of types for their

parameters, their return type should be the same. Since we want to be able to choose a single

method for every combination of parameters, it is reasonable to request that a single method

can be defined for every message for any given sequence of types of parameters.

Using the rule described, it is possible to use the type of the return value of the single

most generic method determined statically for every call as a limitation of the type for all

the return values which can be returned from that or more specific methods at run time.

Furthermore, a static type can be now determined inductively for every expression, however

complex. An additional advantage is that every program extension obtained by defined other

methods, will have to conform to the same rule, and will therefore leave the most generic

type previously determined for every call unaltered, preserving the validity of the existing

code.

In comparison, in Java every message must have a single return type, which can be a

substantial limitation. For instance, a message used to build a list with the elements in the

reverse order, given a list as an input, will always return a generic list, even if the argument

is a list of integers. This behaviour may lead to an excessive use of typecasts, which can be

a source of runtime exceptions. Conversely, using the mechanism described, it is possible to

25

2. Multimethods and Static Typing

define a method which returns a list of integers given a list of integers, a list of strings given

a list of strings and so on, and a more specific return type can be determined statically.2

The set of rules, however, needs to be slightly enhanced if object constructors are used.

The specific details are available in Section 3.14.1.

2.4. Multiple Inheritance

Multiple inheritance is one of the most controversial features in object oriented languages

– many believe that its adoption is an endless source of problems, others say that the intro-

duction of multiple inheritance in a language is like “opening a can of worms”[Mar93]. In

many languages it has not been introduced (Smalltalk) or it has been replaced by alternative

techniques (Java); in many others (C++,CLOS) it is used in conjunction with exoteric and

complex rules. We shall briefly review the problems connected to multiple inheritance, and

simple techniques to keep its side effects under control will be suggested.

The problems related to multiple inheritance are essentially of two categories: those

related to methods and those related to instance variables.

2.4.1. Instance Variables

Those languages that allow the visibility from outside of instance variables can run into

trouble if two different variables defined in two separate classes have the same name. If a

new class is defined inheriting from both classes, a reference to a variables with that name is

ambiguous. Depending on the design choices, it could happen that one of the two variables

hides the other, or that both are available through two differently qualified names.

A similar issue arises when an instance variable defined in a superclass is reachable

through multiple paths in the class graph. The variable could be inherited once or in multiple

copies, one for every possible path. In C++, for example, unless the keyword “virtual”

is used, the instance variables can be actually inherited multiple times[Eck]. This can be

regarded as a violation of the general object oriented philosophy. If we want to model the

class of animals, we can create a variable instance containing the number of legs. Deriving

from that class two classes “domestic animals” and “felines”, and then “cat” inheriting from

the last two, the variable “number of legs” could be inherited twice. That would mean that a

cat can have two different numbers of legs, depending on if it is considered to be a domestic

animal or a feline, which is clearly somewhat bizarre.

2The language offers also the possibility to link together the type of a parameter with the type of the return value.
This allows to define a single method, and still having the ability to discover statically more information about
the type of the return value. More details in Section 3.12.

26

2. Multimethods and Static Typing

2.4.2. Inheriting Methods

A second category of problems concerns the way methods are inherited from superclasses.

In the case in which a method is defined with the same name and parameters in two separate

classes, and a third class is made a subclass of both, a message sent to an instance of the

third class could use either of the two, originating an ambiguity. Both C++ and CLOS, in

this case, give preference to the class declared first in the list of superclasses. This technique,

however, has some major disadvantages: the programmer must keep in mind which ones will

be the preferred classes, which, especially if complex dependencies are used, can be quite

difficult. In the second stance, preferring one of the classes to another, using arbitrary rules,

could conceal logical inconsistencies in the class model, which could lead to problems and

inconsistent program behaviours.

2.4.3. Resolving Ambiguities

There are many possible options to solve the issues related to instance variables. A possible

solution is simply not to allow the instance variables declared within a class to be visible

from outside the class definition. This approach also improves encapsulation, and forces

the actual implementation to be completely “opaque,” hiding its internal details from the

other classes. Since instance variables are not visible from outside the class definition, every

class of the hierarchy will know only about “its” components of the objects, and a class

derived from more superclasses is forced to access the internal variables of each exclusively

through messages. For what concerns variables inherited through multiple paths, the more

straightforward choice is clearly to keep a single copy of each, following the more intuitive

interpretation.

A

CB

D
Figure 2.2.: Multiple inheritance

27

2. Multimethods and Static Typing

Dealing with method inheritance is, in general, not so simple. Referring to the example

in Figure 2.2, we can distinguish several different cases.

1. If there are two definitions fun(B) and fun(C), there is a conflict in D. As we saw, using

explicit rules can be counterproductive. An alternative and more simple approach

would be to detect statically these conditions and request an explicit resolution by the

programmer, defining fun(D).

2. If there are two definitions fun(A) and fun(B), the case of D can be considered under

two different perspectives. In the first one, D inherits two different methods through

two different paths, and a conflict is therefore present. In the second one, the definition

in B is actually more specific than fun(A), and no conflict is present. Both interpreta-

tions are equally viable, but the first is rather strict, whereas the second, more relaxed

one, considerd the situation not to be ambiguous. Usually the second one is preferred,

since the first generates just too many conflicts, and it may be useless in practice.

In the case of both multiple inheritance and multimethods, things might appear to be rather

complex. In reality, there are many similarities between the two, as can be seen comparing

the previous diagram with the one in Figure 2.3.

Every tuple that is the destination of other tuples using the defined relation on the con-

structed graph is actually a specialisation of all them. Whenever there is a discordance among

the methods inherited by those tuples there will be an ambiguity. For instance,the pair DB

is a specialisation of CB, DA and BB. If two methods inherited by those are in conflict, and

there is no local definition, a potential problem is present. If we have two definitions in AB

and CA, we will obtain that BB inherits from AB, CB from CA and, when there is the need

to establish the more specific method applicable for DB, there is no way to perform a unique

choice.

To summarise, by analysing the graph it is possible to detect all the possible conditions of

ambiguity, both originated from multimethods and from multiple inheritance and, for every

possible conflict, to propose to the programmer how to operate to fix the problem. The anal-

ysis can be simplified by the fact that the original class graph does not contain cycles, hence

the derived one is also free from cycles and can be linearised. An exaustive examination of

the entire graph is also unnecessary, since what matters is only the relationship between the

method definitions and their common descendants. Multiple inheritance is not implemented

in the current version of the compiler.

28

2. Multimethods and Static Typing

AA

ABBA ACCA

BB BCCB CC AD

DB DC

DA

DD

CD BD

(a) Pairs of classes

Figure 2.3.: Extension of the class graph: multiple inheritance.

29

3. The Language

The ideas exposed in the previous chapter have led to the definition of a simple experimen-

tal language, which is based on multimethods, is strongly and statically typed and is well

suited for orthogonal persistence. The language defined, which was dubbed with the co-

dename “BOH” (Basic Object Handler), has a working (although not optimised) compiler

which produces code capable of recovery. Among its many features is a syntax similar to

the one used in C++ and Java, a structure that allows the language to be a “pure” object

oriented language while offering techiques to avoid wrapper objects in its implementation,

user-defined operators and strong encapsulation. The language itself is not particularly so-

phisticated, neither is its definition formal. It is just a way to show how a simple multimethod

based, statically and strongly typed and orthogonally persistent language can be defined.

3.1. Introduction to the Language

A program written in the language consists in one or more “packages,” each of which defines

one or more resources in terms of classes and messages. Every package includes zero or

more class definitions, global methods and global variables, which will be described soon.1

Global variables can be used exclusively inside the package in which they are defined, and

cannot be exported.

Every class definition may contains zero or more definitions of instance variables, and

a number of methods. Since multimethods are used, the association between methods and

classes is not unique, as it happens in languages that allow a single receiver. Nonetheless, as a

design choice, only those methods defined inside a class body will have access to the internal

structure of instances of that class. Instance variables are not visible from outside the class

definition. This has positive implications on strict encapsulation, as described in Section

3.7, logically grouping multimethods in separate implementations of the different classes.

Global methods, defined outside class definitions, are used to describe generic operations,

1The current implementation is restricted to a single package and offers no support for global variables, al-
though for the latter the missing code is a trivial addition to the existing compiler.

30

3. The Language

not strictly associated with any particular class. As such, they are not allowed to access any

instance variable, but can perform their operations using messages, as usual.

As already mentioned, in this description we will use sometimes the term “type” re-

ferring to the class of an instance, and the term “field” will sometimes be used to refer to

instance variables. To introduce the syntax of the language, the next section will present

some examples of class definitions. The following sections will introduce the aspects related

to creation and initialisation of variables, standard types, declaration of instance variables,

control structures and some syntactic instruments designed to improve the usability of the

language. A discussion on constructors, and considerations on the efficiency will close the

chapter.

3.2. A First Example

The first example is, of course, the mandatory “Hello, world!” test program, which will give

a general idea of the look of the language.

first_example : uses system

{

!test()

{

println("Hello, world!");

}

}

In this example there is a definition of a package “first_example,” which contains a

single global method which prints the requested text string. The exclamation mark qualifies

the method as exportable from the package. The clause “uses” defines which packages are

imported. If an interactive environment is available, the execution of the program could look

like:

test();

Hello, world!

_

31

3. The Language

3.3. Class Definitions

second_package: uses system
{
//
// first class definition: glass
//

!glass : super object
{
!glass(): super object()
{
}

!break(w:glass)
{
println("Crash!");
}
}
//----------
//
// second class definition: mattress
//

!mattress : super object
{
springs:long;

!mattress(n:long): super object()
{
mattress.springs:=n;
}

!break(m:mattress)
{
for a:=0; a<m.springs; a:=a+1;
{
println("Sproingg!!");
}
}
}
}

Table 3.1.: Example of class definitions

After this first example, it is time to define some new classes, introducing a few other

key elements of the language. The example in Table 3.1 is somewhat long but its meaning

is easily understandable. Two new classes are defined, one defining glasses and one defining

mattresses. Both accept the message “break,” which is used to ask instances to break them-

selves. According to the principles of object oriented programming, each object reacts in its

32

3. The Language

proper way to the message: a glass will print “Crash!,” while a mattress will print that many

times “Sproingg!” as many are the springs contained in it. What follows is an example of

interactive use of the classes, after which the new elements introduced will be described.

a:=glass();

b:=mattress(3);

break(a);

Crash!

break(b);

Sproingg!!

Sproingg!!

Sproingg!!

_

Every class definition has the following form:

<classDef>::=<optionalBang> <id> ":" <superList> "{" <classBody> "}"

For every class it is possible to specify one or more superclasses from which to inherit

characteristics (messages accepted and internal structure). The exclamation mark before the

class name declares the class as usable outside the package. The message body is composed

as follows:

<classBody>::=<fieldList> <methodList>

The declarations of instance variables precede all the local methods of the class, as, for

example, the number of springs in the definition of “mattress.”

springs:long;

In BOH, the identifier of the object declared is in first position, followed by colon and

the type specification, similarly to what happens in Pascal.2 The possible type specifications

for instance variables will be shown in the following sections.

The list of methods consists in zero or more method definitions, which have the following

form:

<method>::= <methHead> <retVal> <methTail>

2For further details, it is possible to refer to the BNF description of the Pascal language, often listed in the
appendix of the language manuals, or alternatively to the syntactic diagrams, as [Met], or [Gro92, page 527].

33

3. The Language

where

<methHead>::= <optionalBang> <id> "(" <paramList> ")"

<retVal>::=

<retVal>::= ":" <id>

<retVal>::= ":" "super" <superCallList>

<methTail>::= "{" <cmdList >"}"

The list of parameters is composed of zero or more parameter declarations, and cmdList

of zero or more commands.

While the first two forms of retVal correspond to methods which work on exist-

ing objects, the third, which uses the token “super” identifies a constructor. Construc-

tors have a behaviour similar to the one found in C++: the method invokes the construc-

tors of subinstances corresponding to superclasses. Those subconstructors are listed in

superCallList. Clearly, their number and type must match the list superList used

in the class definition. In the example of Table 3.1, mattress is subclass of object; therefore,

when a new object is created using mattress(), the call object() will initialise appropriately the

“object” part of a mattress. The rest of the constructor will deal with the initialisation of the

instance variable defined in this level of the hierarchy (in this case, the variable “springs.”)

There can be more than one constructor for every class, and their name and parameters can

be arbitrary.3

A return value is referred using a pseudovariable which has the same identifier used for

the method, as it happens in Pascal. In this case, though, the variable is also usable on the

right side of assignements, since there is no confusion with message invocations, which are

characterised by the use of parentheses after the identifier.

3.4. Declarations and initialisations

In the definition of the method break(), in the above example, the variable “a” appears not to

have any declaration. As a matter of fact, the declaration is unified with the first assignment

“a:=0”. While parsing the source code, the compiler treats the first assignment to an unknown

variable as a declaration plus an initialisation. This is made possible by the fact that, using

the mechanisms shown previously, in every point of the source it is possible to determine

the static type (the most generic type) of an expression, and therefore to obtain the (most

3More information on constructors and their use is in Section 3.14.1.

34

3. The Language

generic) type of the variable which is being declared. A static limitation for the range of

possible types for the variable is present, and the typical advantages of static type checking

are fully retained.

The fact of binding together declarations and initialisations have several advantages.

First of all it is impossible to have uninitialised variables4 (which is, for instance, a weak

point of both C and Pascal.) Furthermore it is not necessary to declare, at the beginning of

the method body, all the variables used, including those of minimal relevance as temporary

variables or cycle indexes. On the other hand, it is still possible to declare, at the beginning of

the method, all the crucial variables, but in this case a suitable initial value must be assigned

to them.

As a concrete example, let us consider the following source fragment:

a:=object(); // the static type of a is now object

a:=5; // legal, long is subclass of object

a:="ciao"; // legal, text is subclass of object

println(a); // legal only if println() is

// defined for object

The legality of the call println(a) is determined statically according to the static type of

a (in this case object). Dynamically the most specific method applicable will be called for

println – in this specific case println(text).

Variables are treated by all means like references to instances. This implies that, if

the source code contains an assignement like “a:=b”, its meaning will be: “b refers now

to the same object referred by a.” In practice, the same object will be referred by both

variables. This behaviour could lead to problems of referential opacity, but the only viable

alternative would be to duplicate completely the referred object, which would severely affect

the program performance. For an analysis of the problem, a comparison with other languages

and a description of the treatment of primitive types, the reader can refer to Section 3.14.2,

“Instances Sharing and Side Effects.”

Primitive Types and Constants

As in any other language, BOH offers a number of primitive types, listed in Table 3.2

together with their definitions.5

4There is no similar guarantee for the initialisation of instance variable inside a constructor. That responsibility
is left to the programmer, who must define the proper semantic for the implementation and the initialisation
of the object and its components.

5The choice of using the term “word” for 16 bit integers is mostly due to historic reasons: the terms byte,
word, long and quad are probably very familiar to all those who used a Motorola 680x0 processor, which
allowed those as basic data types.[Mot92] In reality the term “word” is often referred to the unit by which
memory is accessed, and is therefore dependant on the hardware architecture. An alternative choice could

35

3. The Language

byte integer number in the range -128...127 (-27...27-1)

ubyte integer, 0...255 (0...28-1)

word integer, -32.768...32.767 (-215...215-1)

uword integer, 0...65.535 (0...216-1)

long integer, -2.147.483.648..2.147.483.647 (-231...231-1)

ulong integer, 0...4.294.967.296 (0...232-1)

quad integer, -9.223.372.036.854.775.808...9.223.372.036.854.775.807 (-263...263-1)

uquad integer, 0...18.446.744.073.709.551.615 (0...264-1)

bool true or false

text text, or a string or characters

float single precision floating point numbers (IEEE-754)

double double precision floating point numbers (IEEE-754)

Table 3.2.: Primitive types available in BOH.

Since BOH is strongly typed, every constant must be recognisable as belonging to a

unique type. If a specific kind of numeric constant is needed, a suffix can be added to specify

the type, similarly to what happens in C,6 as follows. If D is a digit between 0 e 9, and L an

optional minus sign, then:

<L><D>+ has type long as in: 61342

<D>+"u" has type ulong as in: 3183714311u

<L><D>+"b" has type byte as in: 34b

<D>+"ub" has type ubyte as in: 34ub

<L><D>+"w" has type word as in: -11621w

<D>+"uw" has type uword as in: 34uw

<L><D>+"l" has type long as in: -81l

<D>+"ul" has type ulong as in: 63ul

<L><D>+"q" has type quad as in: 711q

<D>+"uq" has type uquad as in: 3uq

"true" has type bool

"false" has type bool

<L><D>+"."<D>+ has type double as in: 3.25

have been “short” instead of “word.” The standard IEEE-754 is explained in detail in many microprocessors
manuals.[Mot93][Mot94] Floats are considered to be 32 bits values, and doubles are twice that much, that is
64 bits.

6In C a constant like 4L is a long, 42112U is unsigned, 133UL is unsigned long, the constant 4.2f5 is a float
and 4.2e5 is a double.[KR89]

36

3. The Language

<L><D>+"."<D>+"f" has type float as in: -2.4f

<L><D>+"f" has type float as in: 61f

<L><D>+"f"<L><D>+ has type float as in: 4f-11

<L><D>+"."<D>+"f"<L><D>+ has type float as in: 3.6f9

<L><D>+"."<D>+"e" has type double as in: -2.4e

<L><D>+"e" has type double as in: 61e

<L><D>+"e"<L><D>+ has type double as in: 4e-11

<L><D>+"."<D>+"e"<L><D>+ has type double as in: 3.6e9

Other unusual ways to represent floating point numbers are described in Section 3.10,

“Syntactic Tools.”

Text objects have no predefined limitations in length, and no assumption is made on

their internal format. The only mandatory operations are the few imposed by the standard

libraries: a print operation, concatenation, input from terminal and a few others. In the source

code a text constant is enclosed in double apices ("). Two consecutive double apices inside

a text constant have the effect of having one double apices character inside the constant, as

it happens in Pascal. With the exception of text constants, the source code is treated by the

compiler as case insensitive.

3.5. Identifiers

The range of characters usable in identifiers is considerably more extended than the one

available in other languages. Every identifier can in fact be an arbitrary sequence of the

following:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789‘~|\/?><+=_-*&^%$#@!

with the restriction that the first character cannot be a number. It is therefore perfectly

acceptable to write a method like:

! ~B%#@@$? ():long

{

~B%#@@$? := 15;

}

37

3. The Language

From the language point of view, even the usual infix operators like "+", "-" and similar

are considered to be identifiers rather than separate tokens. A suitable parsing algorithm

internally transforms the infix operators in ordinary function calls.

Actually, an interesting feature of the language is the ability for the programmer to

extend freely the language with custom infix operators, using identifiers composed by all

the characters of the above list. This feature is reminiscent of the similar one available in

Prolog[Proa][Prob]. A description of the mechanism is available in Section 3.11, “Opera-

tors”.

3.6. Instance Variables

Every class can contain one or more instance variables, defined using the following syntax:

<field>::=<idList> ":" <fieldType>

idList is a sequence of one or more identifiers separated by comma. fieldType is

defined as:

<fieldType>::=<id>

<fieldType>::=<id><indexList>

<indexList>::=<index>

<indexLst>::=<indexList><index>

<index>::="[" <numLong> "]"

<index>::="[" <numLong> ".." <numLong> "]"

Every instance variable can therefore be defined as an object or an array (possibly multi-

dimensional) of objects. For every dimension is possible either to specify the total number of

elements (in which case the index will be between 0 and n-1, as in C), or alternatively spec-

ifying both the lower and upper bounds, in the style of Pascal. This is the only part of the

program in which it is possible to define arrays. This is due to the fact that an explicit spec-

ification of a maximum number of elements for a data type external to the class establishes

an undesirable dependency from the implementation. If, on the other hand, every access to

the array and its maximum number of elements are encapsulated inside the class, it is easier

to change the size of the array without adverse effects, or even to replace the array altogether

with another kind of data structure. Where in other languages common practice is to define

a global variable that is an array, in BOH the programmer is asked to first define a simple

38

3. The Language

class containing the array definition, and then to define the global variable as an instance of

that class. The extra work is more than compensated by the greater generality of the code.

3.6.1. Parameters

The syntax of the list of formal parameters is the following:

<paramList>::=

<paramList>::=<idList> ":" <id>

where idList is a list of identifiers separated by comma and id is the identifier of a

class name.

As already mentioned, the parameters are always treated as references to the objects used

as actual parameters. The parameters passed to the method, from an implementation point

of view, could be pointers to instances or directly the data in the case of primitive types.

However, it is possible to obtain the same behaviour in both cases using suitable techniques,

as described in Section 3.14.2, “Instances Sharing and Side Effects.”

3.7. Encapsulation

In the object oriented languages in which a single receiver is allowed, there is a natural

association between every method and the class of its receiver. This connection is normally

used to support some form of encapsulation, by grouping together messages which refer to a

single class. Those methods consitute therefore an interface to the internal implementation of

the class. Different policies are then possible to control the visibility of the instance variables

defined for each class from the internal methods, from the methods related to the subclasses

of the given class, and from other unrelated methods.

Using multimethods, there is no longer a unique connection between a single class and

each method, since all the parameters are considered symmetrically. To reestablish some

form of encapsulation, a new approach is, therefore needed. In Cecil, every multimethod can

access all the instance variables of all the classes of the parameters involved. This policy is

one of the possible forms of access control, but it is not immediately clear how the interface

to the various parts of the program is defined.

The technique used in the language allows every method to be related in the priviledged

way described to at most one class. The instance variables of that class will be directly

accessible by the method, while the internal structure of the instances belonging to other

classes will be accessible exclusively using messages. Therefore, every method is a part,

from a logical point of view, of the implementation of a single class. This accounts for a

39

3. The Language

better separation between the implementations of different classes, enhancing encapsulation

and reducing the interdependencies. To describe the association between a method and a

class, BOH requires that the source of method which is part of the implementation of a

class has to be physically enclosed in the module describing the class, obtaining therefore

a single piece of source code for the implementation of every class. To handle the case in

which a method does not need to be tied to a specific class, the language allows, additionally,

the definition of “global” methods, which are placed in the package, but outside all class

definitions. Their code is not allowed to use directly the internal structure of any instance,

but can use freely messages to operate on other objects as required. An additional advantage

of this way of organising the code is the ability to implement efficiently primitive data types

with little effort, as explained in Section 3.14.2.

3.8. Nested Contexts

As in C and similar languages, it is possible to create blocks, or contexts, that is parts of

program with their own local variables, which are treated like single instructions. In this

simple definition it is not possible to create nested class definitions or methods.

This is the syntax used:

<context>::= "{" <cmdList> "}"

Contexts can be nested arbitrarily, and the variables defined inside a block will appear as

undefined outside the block. Here is an example:

a:=5; // a is the only var defined in this point

{

b:=a; // b is local to this context

{

c:="ciao"; // c is defined and forgotten right after

}

// x:=c; // it would be an error. c is undefined, here

{

c:=811.23; // a variable distinct from the previous one

}

} // b and c are no longer usable

Interestingly, because of the way variables are defined and simultaneously initialised, it

is impossible to have local variables that hide other variables with the same name defined

40

3. The Language

previously. For instance, in:

{

x:=expression;

...

there are two possible cases: if the variable “x” was already defined, then this is an

ordinary assignment. If “x” was not previously defined, then it is a declaration with the

related initialisation. This is in no way a limitation, but helps instead to avoid potential error

conditions. In fact, the mechanism by which a more deeply nested local variable hides a

previously defined one with the same name is very rarely used, and its practical usefulness

is questionable, since it requires an unnecessary mnemonic effort by the programmer to

distinguish the various variables with the same name. Indeed, such an occurrence is likely

to be the result of an involontary mistake by the programmer, and many compilers issue a

warning when a similar situation is detected.7

Blocks are freely usable any time the programmer desires to introduce an isolated frag-

ment of code with its own local variables. Their most natural use is in conjunction with

control structures, as detailed in the following section.

3.9. Control Structures

3.9.1. While

The “while” loop has the following structure:

<cmd>::= "while" <expr> "{" <cmdList> "}"

The command sequence cmdList is executed while the expression is true. The evalu-

ation of the expression is done before each iteration. If initially the condition is false, the

commands listed are never executed. expr must have static type bool. The part enclosed

between "{" and "}" is a context, and it is therefore possible to define local variables. An

alternative syntax is available:

<cmd>::= "do" "{" <cmdList> "}" "while" <expr> ";"

In this second form, the sequence cmdList is always executed at least once.

7For instance, gcc has a command line flag (-Wshadow) to activate a warning if a local variables hides a more
external one, since this could be the result of an error.

41

3. The Language

3.9.2. If...elseif...else

This is the form of the choice instruction:

<cmd>::= <ifHead>

<cmd>::= <ifHead> else "{" <cmdList> "}"

<ifHead>::= "if" <expr> "{" <cmdList> "}"

<ifHead>::= <ifHead> "elsif" <expr> "{" <cmdList> "}"

If the evaluation of the boolean expression following "if" gives, as a result, "true," then

the context which follows is executed. If the result is "false," all the expressions following

the various "elsif" clauses are evaluated, one at a time (if they are present), and only one

context, the one following the first true expression encountered, is executed. If none of the

expressions are true, the context following "else," if present, will be executed.

3.9.3. For

The definition of the “for” construct is:

<cmd>::= "for" <cmd> <expr> ";" <cmd> "{" <cmdList> "}"

Similarly to the equivalent C, the first command is executed once and is used to set up

the loop. Subsequently, the expression is evaluated. If it is false, the loop exits, while if

it is true the list cmdList is executed, followed by the second command, usually used to

increment indexes, after which the evaluation is repeated and so on. It is worth noting, in

the definition, the use of the semicolon. The sign is used to conclude an instruction, and is

therefore considered to be part of the command, as in:

<cmd>::= <id> ":=" <expr> ";"

Examples of “for” cycles:

for a:=0; a<10; a:=a+1;

{ println(a);}

for {a:=0;b:=2;} a<10; {a:=a+1;b:=b*2;}

{ println(b);}

42

3. The Language

3.9.4. Case

The syntax of the “case” construct is the following:

<cmd>::=<caseStruct>

<caseStruct>::=<caseBody> "}"

<caseBody>::=<caseHead>

<caseBody>::=<caseBody> <exprList> ":" <cmd>

<caseBody>::=<caseBody> "default" ":" <cmd>

<caseHead>::= "case" <expr> "{"

The expression following the “case” clause is evaluated and compared against the test

expressions. The first matching expression causes the following command to be executed,

after which the execution resumes after the “case” structure. The expressions can be of

arbitrary type; the comparison is made using the binary message “=”, whose behaviour can

be obviously customised for different classes.

3.9.5. Other Constructs

At the current stage of definition of the language no “break” instruction, used to force an

anticipated exit from cycles, is defined; its effect can be however simulated using logic vari-

ables. Intentionally, there is no provision for unconditional jumps (“goto” instructions) or

labels associated with instructions.

3.10. Syntactic Tools

In most programming languages there are instruments whose purpose is to make the code

more understandable and to simplify the programming activity by simplifying or adding

functionalities on the syntactic level; the language which is here defined is no exception.

Those instruments are usually referred with the term “syntactic sugar,” since they do not

change the way the language works, but are a commodity offered to the programmer to

improve aspects of the source code, such as its legibility or its comprehensibility. We shall

review here which are the features offered by this language definition.

3.10.1. Comments

It is possible to make the code more comprehensible by adding to the source program textual

annotations, which, although ignored by the compiler, can offer useful information on the

43

3. The Language

way the code works. Comments can be either written on a single line or as a block of text.

On each line of the source code, the compiler ignores everything that follows the characters

"//" (unless they appear inside a text constant). For instance:

a:=5; // the value of a is now 5.

The compiler considers as a comment a block of text which is included between the

sequences "/*" and "*/". Differently from other languages, in BOH block-style comments

can be nested, which can be useful during the debugging when other comments are already

present, as in:

a:=5;

/*

a:=4; /* the value of a is now 4 */

*/

// actually, it is 5.

3.10.2. The Dot

The dot is used in a particular way, using a notation to the one found in the language

Dylan.[App95][Sha97][Unia] In BOH, the use of the dot is perfectly equivalent, at the syn-

tactic level, to the use of a pair of parentheses, according to the following criteria:

.x is equivalent to x()

a.x is equivalent to x(a)

a.x() is equivalent to x(a)

a.x(b,c,...) is equivalent to x(a,b,c,...)

This equivalence holds for message calls, access to instance variables and even for num-

bers containing a decimal point.

For instance, instead of writing:

println("Hello!");

it is perfectly legal to write:

"Hello!".println;

44

3. The Language

Similarly, referring to one of the first examples, the notation:

springs(a)

could have been used to refer to the field a.springs.

Finally, although surprising, it is perfectly acceptable, for instance, to write the number

4.25 as 25(4), and the number 6.3e-8 as 3e-8(6). The current implementation of the compiler

can indeed accept either forms.

Apart from the aesthetical factor, there is a concrete practical aspect. For instance, a

programmer used to Smalltalk could be pleased to discover that 4+5 can be alternatively

written as 4.+(5) – this use can appear much more familiar to those who use a traditional

object oriented language where there is a single receiver for objects. The code

myWindow.close();

can be more easily interpreted as a message close() sent to the object myWindow. Simi-

larly, the code:

myWindow.move(30,80);

has exactly the same notation of that used in a more traditional language. In reality, the

message dispatching is performed considering the dynamic type of all three the parameters,

instead of considering just the first, but it still possible to obtain a behaviour similar to the

case of single receivers by defining the methods appropriately,8 if desired.

To return to the syntactic aspect, using the dot as described allows us also to improve

the clarity of the code when an expression contains many nested function calls. The two

following forms are equivalent:

nested: four(three(two(one(a,b),c,d)),e);

using the dot: a.one(b).two(c,d).three.four(e);

The two expressions are equivalent, but the second form is simpler, and gives a better

idea of the sequence of the calls chaining. As an additional advantage, the language could

be more practical, at least in principle, to be used interactively as a scripting language. For

instance, it is easy to notice the similarities between the two following lines:

8If for each message there is a single method definition for each type of the first parameter, the actual code
behaviour is undistinguishable from that of a language based on messages sent to single receivers.

45

3. The Language

Unix: cat mytext | cut -c1-5 | grep "pattern" | more

BOH: cat(mytext).cutc(1,5).grep("pattern").more;

What is usually done with pipes in the Unix shell could be replicated by chaining func-

tions in the way shown.

3.11. Operators

One of the most peculiar characteristics of BOH is the treatment of operators. In fact, while

in most languages infix operators are hard-coded in the syntactic specification, and it is not

possible to change them, in BOH the definition of operators is a characteristic which is

modifiable and extendible by the user.9 To the set of predefined operators (imported from

the system package), the user can add custom ones with definable levels of priority and

associativity, which can help to make the code clear and understandable.

For instance, we might want to add a custom operator %, left-associative, with priority

greater than "+" and "-", but lower than "*" e "/", which can be simply obtained writing:

operator x % xx 450;

It is now possible to write in the package body something like:

a:=5+4%6*9%8;

and the compiler will internally transform the command into:

a:=+(5,%(4,%(*(6,9),8));

The syntax of a new operator definition is as follows:

<operDef>::="operator" "x" <id> "x" <numLong> ";"

<operDef>::="operator" "x" <id> "xx" <numLong> ";"

<operDef>::="operator" "xx" <id> "x" <numLong> ";"

<operDef>::="operator" <id> "x" <numLong> ";"

<operDef>::="operator" "x" <id> <numLong> ";"

9This functionality descends quite directly from the equivalent one found in Prolog, where, on the other hand,
it is rarely used, given the particular nature of the language.[Proa][Prob]

46

3. The Language

All the operator definitions must appear at the beginning of the package definition, be-

fore every class. The number refers to the priority: operators with higher priority have

higher precedence (e.g.: “*” has higher priority than “+”). The default priorities for the most

common operators, imported from the system package, are listed in Section 3.13, "Library

Functions".

The form x id x refers to a non associative operator (like ":="); x id xx is an left-

associative operator, that is a id b id c becomes id(a,id(b,c)) ; xx id x is a right-

associative operator, that is a id b id c becomes id(id(a,b),c) ; id x is a monadic

prefix operator and x id is a monadic postfix operator.

It is important to note that the symbol used to identify an operator is a generic identi-

fier, which can include characters other than letters and numbers. It is therefore possible to

define operators like "suitable?", "+-almost", "miXed", "!$*??o91@#" and so on. A custom

preprocessor internally transforms all the infix operators into normal functions calls. The

following code is an example:

operator x leone x 150;

operator a+ww x 150;

operator x *rrww 55;

operator x +j x 800;

operator x -j x 800;

operator xx + x 300;

operator xx - x 300;

operator xx * x 500;

operator xx / x 500;

operator - x 750;

tok:=4+5*3--6/2.5e-6+-y*rrwwleonex*rrww;

This is automatically transformed in the following:

tok:=*rrww(leone(*rrww(+(-(+(4,*(5,3)),/(-(6),5e-(6)(2))),-(y))),x));

As a concrete example, the following is a minimal definition of complex numbers as

operators:

47

3. The Language

operator x +j x 650;

class complex: super num

{

re,im:double;

+j(r,i:double): super num()

{

+j.re:=r;

+j.im:=i;

}

Using this minimal definition, it is possible to write directly in the source code expres-

sions like 5.2+j6.4, or -3e-8+j2.25e6. A more complete definition of complex numbers,

available in the appendices, allows the programmer to use more complex forms like:

println(3.0+j1.24 + 4.21-j7.11);

Using operators, the notation becomes in this case very clear and simple to use.

3.12. Type Tunnels

The language offers a limited support for methods that return a value whose static type is

the most generic among some of the actual message parameters. This allows to define a

single method to operate on a range of classes while maintaining the most specific possible

definition for the return type. In:

!tunn1(aa:A):aa

{

tunn1:=aa;

}

the identifier of the parameter is used as the type of the return value. This means that the

parameter and the return value belong to the same type and, as long as the method imple-

mentation maintains that connection, the compiler is able to obtain statically a much more

specific information about the return value. It is therefore possible to write a single method

that operates on an instance of A, but the compiler will still be able to determine that, since

the return type is the same one of the actual parameter, the returned value belongs to some-

thing more specific than a generic A. In the example above, if A has as a subclass B, bb is

48

3. The Language

an instance of B and a message “testB()” is available only in class B, the following code is

perfectly legal:

testB(tunn1(bb)); // legal! The static type is B

The information concerning the “type tunnel” is preserved through intermediate variables

and function calls. In the following definition:

!tunn2(aa:A):aa

{

one:=aa;

two:=tunn1(one);

tunn2:=two;

}

the compiler is able to detect that the binding between the return value of tunn2 and

its parameter is still valid, and the definition will work as expected. Additionally, it is also

possible to bind the return value to a group of parameters, in the following way:

!combine(aa:A,bb:aa):aa

{

if Atest(aa,bb) {

combine:=aa;

} else {

combine:=bb;

}

}

In this case the return value is bound to two parameters. The effect is that the return type

will be statically, in any case, at least the most generic between the static type of the two

parameters. If combine is invoked on parameters whose static type is (A,A), (A,B) or (B,A),

its return value will be detected statically as A, if the message parameters have static types

(B,B), the compiler can safely use B as the static type of the return value.

The technique is not so useful as an implementation of parametric polymorphism, but it

can be used to solve a few practical problems. The mechanism described is fully supported

by the current implementation of the language compiler.

49

3. The Language

3.13. System Library

To obtain a working compiler, the core definition of the language must be integrated with an

essential set of standard functionalities, like basic I/O, boolean and arithmetic functions, and

standard operators. While older languages used to incorporate all those functions in the main

language definition, the trend of all modern languages is to keep as much as possible of the

above mentioned features in a separate module, to allow an easier replacement, extension

or customisation of the more common utilities without the need to change the language

definition. This section contains some indications on the content of an essential system

library, needed to obtain a usable language; however, the specification would need to be

expanded to obtain a more complete programming environment in case the language were to

be used for real life programming tasks. A usable subset of the proposed system library is

available in the current implementation.

3.13.1. Standard Classes

In Figure 3.1 a diagram shows which could be a possible minimal class hierarchy to be

included in the system package.

object

num

int real

byte

ubyte

word

uword

long

ulong

quad

uquad

doublefloat

text classbool

byteInt wordInt longInt quadInt

Figure 3.1.: Standard classes

Num, int, real, byteInt, wordInt, longInt and quadInt define common characteristics for

the various classes of numbers.

50

3. The Language

3.13.2. Arithmetic Operations

In the system package there should be a provision for at least the four basic numeric op-

erations ("+", "-", "*", "/") on every numeric type. To convert numbers from one type to

another, a method with the name of the destination should be available, such as: long(5.2)

returns 5L. For real numbers the trunc() call, logarithms and the main trigonometric functions

are needed, while others, such as round(), can be a useful addition. Arithmetic operations

must be applicable to arguments of heterogeneous type, performing the necessary type con-

versions internally. To convert a longer integer type to a shorter one, two functions to extract

upper and lower part would be useful (for instance: upper and lower word of a long int,

or lower and upper byte of a word and so on.) On integer numbers, shift operations (both

logical and arithmetic10), increments and decrements should be defined.

3.13.3. Comparison Operations

On numeric values must be defined the operations "<", "<=", ">", ">=", "=" and "<>", with

the usual mathematic meaning. All those operators return a boolean value.

3.13.4. Boolean Operations

The standard library should support the usual "not", "and", "or" operations. Optionally there

could be a provision for additional operations like "eqv","xor" etc.

3.13.5. Standard Operators

These are the operators which should be supported, listed together with their priority:

operator xx + x 300;

operator xx - x 300;

operator xx * x 500;

operator xx / x 500;

operator - x 750;

operator x < x 200;

operator x > x 200;

operator x = x 200;

operator x <= x 200;

operator x >= x 200;

10In a logical shift, the value is considered as a bit field; bits set to zero are used to fill in the void space. In an
arithmetic shift, the value is considered as a signed integer number; a right shift on a negative number will
set the most significant bit to one, in order to preserve the sign of the number.

51

3. The Language

operator x <> x 200;

operator x and x 150;

operator x or x 130;

operator not x 170;

The dot has priority 700, if used to join identifiers (as in id.id(abc)), while it has prior-

ity greater than every other operator if it is detected inside a floating point number.11 The

assignment instruction ":=" is not an operator, and it behaves quite differently from usual

functions. Section 3.14.2 has more details.

3.13.6. Input/Output Operations

To offer a minimal support for user interaction, the library should define the messages

“print(object)” (which, according to the type, print a textual representation of an object),

println(object) (print line, as the previous one plus a newline character), nl() (prints a newline

character). Furthermore, the functions readLong(), readText() and so on should be defined

(to read objects from the console).

3.13.7. Other Functions

The generic test “=(object,object):bool” has the default behaviour of equality between refer-

ences to object (two objects are equal if they are the same object). This behaviour is changed

in arithmetic equality for numbers, and can be redefined as needed for user-defined classes.

A function “class(object):class” will return the class to which the parameter belongs, while

a message “panic(text)” will abort execution printing the text as an error message. There is

currently no definition for a more sophisticated error handling mechanism).

3.14. Further Considerations

3.14.1. Ensuring Coherence: Constructors

As previously seen, a few simple rules allow us to obtain a type system which enables a static

type checking and is generally coherent. The rules, simplified for clarity, were the following:

To ensure the coherence in the types of return values, a rule asserts:

11It is always possible to recognise a floating point number since its first character is numeric, which is illegal
for identifiers.

52

3. The Language

� If two methods have equal identifier and arity, then they correspond to the same mes-

sage, and their definitions must be covariant, that is if two methods are fun(A1,B1):C1

and fun(A2,B2):C2, and A1 is subclass of or equal to A2 and B1 is subclass or equal

to B2, THEN C1 must be subclass or equal to C2 as well.

By applying the rule above it is possible to obtain, for every combination of parameters for

a message, a single limitation of the type of the return value, that is the most generic type

of that value. More generally, that allows us to obtain statically the most generic type of an

arbitrary expression.

A second rule is used to ensure that in runtime one and only one more specific method

will be applicable for every combination of dynamic types of the parameters:

� If in two methods corresponding to the same message fun(A1,B1) and fun(A2,B2), A1

is subclass of A2 and B1 is superclass of B2, THEN there must exist a definition of the

method fun(A1,B2).

Whenever there is a potential ambiguity in the method definitions, the user is requested to

specify exactly what is the intended behaviour of the message.

For ordinary methods this technique works quite well. However, a little complication

arises for constructors. If there is a method definition like:

!constructorSubClass(): super constructorSuperClass() {...

the meaning is that the part of the instance which corresponds to the superclass is created

and initialised by constructorSuperClass(). It is clearly required that the constructor returns

an object belonging to the superclass, but never to one of its subclasses. That would mean

that the part of the object corresponding to the superclass belongs to still another class,

which does not make much sense. Unfortunately, in this circumstance, constructors operate

somewhat outside the general principle according to which any value belonging to a subclass

of a given class is usable wherever an object of that class is expected. The exception is due

to the fact that constructors deal not exactly with the value of the object but with the object

itself, which is being created. Admittedly, the use and the requirement which are imposed

by constructors are somewhat inconvenient and the mechanism could probably be refined.

In the meantime, it is necessary to impose rules devoted to ensuring that the method

definitions are such that they comply with the requirement above. The following set of rules

is suitable for that purpose.

53

3. The Language

� Given two methods corresponding to the same message, if one of them is a constructor

costr(A,B):C and the other is a normal method fun(A1,B1):C1, THEN it cannot be the

case that simultaneously A1 is subclass of or equal to A and B1 is subclass of or equal

to B.

� If there are two definitions costr(A,B):C and costr(A1,B1):C1, with A1 is subclass or

equal to A and B1 is subclass of or equal to B, THEN C1 must be equal to C. (no

variance for constructors)

The first rule ensures that no ordinary method can be more specific than a given construc-

tor; therefore, if a constructor is called with given parameters, no conventional method will

“steal” its role. In other words, we will be sure that a real constructor is called. The sec-

ond rule ensures that every constructor more specific than another constructor will return a

value of the same class, and not of a subclass. That allows us to determine statically not

only the most generic type, but the exact one, which is what is required (in the sole case of

constructors). The above set of rules is not particularly restrictive, but ensures effectively

that constructors can be called safely. In the implementation which is here described both

rules are enforced, and it is possible to check their efficacy using some of the test programs.

3.14.2. Instance Sharing and Side Effects

In their implementation, most compiled object oriented languages keep their instances in

blocks of contiguous memory. If this is the approach, a variable which refers an object can be

handled essentially in two ways: either considering the whole memory block as the variable,

or using a single pointer to the real object structure kept in memory. The first approach,

conceptually cleaner, is extremely difficult to implement efficiently, since, every time an

object is used as a parameter to a function, the entire object structure should be replicated.

This would lead to an extremely high overhead in terms of memory used and time spent

copying structures. For this reason, most implementations use the second solution, managing

the variable as a pointer.

This more efficient solution, however, has an important consequencet, that deserves to

be carefully considered: every time there is an assignement, and a variable receives a value,

what is transferred in the variable is, in reality, just a pointer to an already existing object.

The result is that, if a variable is assigned to another variable, the memory block containing

the object, after the assignment, is shared by the two variables. This sharing is not harmful

in itself, but can have, as a result, unexpected side effects.

Let us consider, as an example, the following Java program:

54

3. The Language

class sideEffect

{

long n;

sideEffect(long v) { n=v;}

static void dangerous(sideEffect a,sideEffect b)

{

System.out.println("b is "+b.n);

a.n+=20;

if (b.n>10)

System.out.println

("Hey! The variable b has changed! Now it is: "+b.n);

}

public static void main(String av[])

{

sideEffect a;

a=new sideEffect(5);

dangerous(a,a);

}

}

The output of the program is this:

b is 5

Hey! The variable b has changed! Now it is: 25

As shown, when the parameter a is incremented, the parameter b gets incremented as

well, despite no explicit action is performed explicitly on b. The result is that a variable can,

in certain circumstances, change unexpectedly its value. Unfortunately, there is no imme-

diate solution to this problem, unless a non imperative programming paradigm is used, or a

considerable overhead is accepted. The language which is here defined, therefore, accepts

this compromise as well, and uses pointers (although implicitly) to refer to objects. On the

other hand, even the elegant language Smalltalk has the same behaviour, as can be proved

writing a small test program.

In this language, therefore, the instances are implemented using memory blocks referred

by pointer, as already mentioned in Section 3.4. The result is that the semantic of the assign-

ment operation is as follows:

a:=b;

55

3. The Language

means: “The variable a does no longer refer the previous object; after the assignment

the variable refers the same object referred by b.” As a result, after the assignment, a and b

are two references to the same object, and the two will remain shared until one of them is

assigned again to some other value. The object that was referred by a before the operation is

no longer used and, if no other references to the same object are present, the related memory

area can be safely disposed.

The semantic of the operation is now defined. Naturally, it would be reasonable to ex-

pect that the same behaviour holds for every type of object, regardless of their type. This,

however, could involve a penalty in the use of simple, primitive types. If even the most basic

types like numbers and characters were implemented as objects, in the following code:

b:=5; // b is a pointer to the numeric object "5".

a:=b; // a and b refer now to the same object

inc(b);

In that example, the variable “a” would be expected to change as well, according to what

has been said concerning the sharing of objects. Maintaining the same behaviour, though,

would prevent to keep those simple data types in machine registers. In fact, if the “5” were

kept in a register, instead of keeping a pointer, an increment would affect exclusively a single

variable, instead of every variable that, according to the definition, should be connected to

the same object. On the other hand, using objects for every simple numeric value, boolean

etc would involve a huge number of bookkeeping operations, wasting system resources. For

this reason Java, for instance, offers a number of primitive data types which are explicitly not

objects. A variable which has one of those types is not managed in same way an object is,

and cannot receive messages. For every basic type, a symmetric “wrapper” type is available,

which is used to build an object with the same characteristics of the basic type, and an

explicit conversion between the two forms is requested by the user. Therefore, Java offers

the types int (primitive), Integer (object), long (primitive), Long (object), etc. This solution is

somewhat inconvenient in which not every variable is treated in the same way, and multiple

representations for the same conceptual data type are present, requiring a conversion.

An alternative, much cleaner solution, can be obtained in BOH. Since, as previously

described, the only methods authorised to change the internal structure of an objects are

those defined inside the class, and since the basic types are defined in the system library, it is

sufficient to define the functions which work on those primitive types in such a way that they

never change the content of those object used as their parameter. For instance, the function

inc(), as defined in the system library, should not change the “internal” state of its parameter,

56

3. The Language

but can instead simply return the incremented value as a new object.

As a consequence, the only ways to change objects belonging to one of the primitive data

types are either to use assignment, or to use one of the library functions (which could pretend

to create a new object as a return value). In both cases the behaviour of the assignment is

perfectly consistent with the semantic defined, which therefore holds for every data type. The

fact that the object is internally managed as a single machine word is completely transparent

to the user, and the illusion of using “true” objects is fully preserved. A single semantic is

sufficient, and it is no longer necessary to sacrifice execution efficiency.

3.15. Parameters

The “trick” described, very useful to obtain an efficient implementation, solves however only

part of the problem. The issue of how to deal with parameters needs to be addressed as well.

The point can be made clear with a small example. In the call:

test(a:fruit);

the parameter of the message is passed to the dispatcher using a pointer to the object. The

pointer will be typically stored temporarily in a register, or on the stack if the architecture

does not have enough general purpose registers. The dispatcher will use the pointer to find

the class of the object and will select the appropriate method. However, if the parameter is a

value of a primitive type, as in:

test(a:long);

the matter becomes more complex. For efficiency reasons, the more logical place to store

temporarily the object would be the register itself, bypassing the use of a pointer and the need

to store the value in a real object in memory. On the other hand, the dispatcher could now

receive a generic value which could be a pointer or a value, and there is no way to distinguish

them.

There are several possible solutions, with different degrees of complexity. The most

straightforward solution would be to create on-the-fly a temporary wrapper object in mem-

ory, so that the dispatcher receives always a pointer. The overhead involved would be, how-

ever, very high and there would be no advantage in keeping data of primitive types in regis-

ters or single memory locations. Another solution would be to tag the value with a flag that

makes it possible to distinguish between the two cases. The downside is the loss of part of

the number of bits usable, and the extra time needed to set and to extract the tag. A slightly

57

3. The Language

better solution could be to group together all of the tags into an extra word, using groups of

bits to specify whether the corresponding parameter is a pointer or a primitive value, and its

type. This is a rather interesting solution, but other options are available.

Thinking of the way the dispatcher operates, the only information needed to select the

right method is the class of each parameter. An alternative could therefore be to pass a

pointer to the class alongside each parameter. That does not require tags and speeds up the

dispatcher, but on the other hand it requires to use two machine words instead of one for

each parameter, which could lead, especially on architectures with few registers, to basically

doubling the number of accesses to the stack, in memory, to park the parameters of each

method. A much better solution, however is possible.

The mechanisms described for the type checking allow the language to determine the

most generic type of each invocation. In a case like:

test(a); // static type of a: fruit

the compiler can discover statically that the parameter is always an instance of fruit or a

subclass, a complex object in any case. Therefore, a specialised dispatcher, possibly inline,

does need to deal only with objects, and the use of a single pointer is sufficient. If, instead,

the call is:

test(a); // static type of a: long

the dynamic type of a can only be long or a subclass. By simply imposing that primitive

types cannot be used to generate subclasses (which is a fairly rare eventuality anyway), the

type can be determined entirely statically, and the dispatcher can be avoided altogether. If

there is more than one parameter, there is no need to check the type of that one to select the

proper method. Summarising, the parameter can be passed using simply a single register.

The only critical case is:

test(a); // static type of a: object

In the case in which the static type corresponds to a class that has subclasses of either

kinds, and only in this case, it could be used a pair of registers, one for the data (pointer or

the value) and one for the class. The classes which need this treatment are typically a very

small number (object and a few abstract classes), therefore this last soultion should allow to

use optimally the available registers while saving time during the message dispatching.

58

3. The Language

3.16. Dispatching

As mentioned, by generating different, specialised forms of the dispatching call depending

on the specific invocation it is possible to reduce the time required to locate the most suit-

able message and use more efficiently the available registers. In general, the way in which

dispatching is implemented in object oriented languages falls into one of two categories:

table-based and cache-based. Using tables, created during the compilation, the dispatcher

essentially uses a reference to the class of the object as an index into a dispatching table, to

obtain the address of the suitable method. The approach is usually very fast and efficient.

An alternative, more common in dynamically typed languages, is to maintain a cache of the

most recently used resolved method invocations, to minimise the time required to the dis-

patcher to find the right method in case the same one had been encountered recently during

the code execution. A small problem of the dispatching tables in the case of multimethods, is

that the space required grows (potentially) in an exponential way with respect to the number

of parameters used. This pessimistic picture is in practice much less dramatic, since many

optimisations can be performed to reduce considerably the size of the tables. There is a

great deal of literature devoted to finding algorithms suitable to compress tables in the case

of multimethods [PHLS99][DAS98]; however, by considering carefully the graph of multi-

methods, the optimisation can be even more drastic, eliminating, in many cases, the need for

a dispatcher altogether. To do so, it can be noted that, out of all the possible tuples of the

graph, only a limited number have actual multimethod definitions. In particular, it is possible

to determine, inside that graph, a subgraph composed by the tuples that have a method defi-

nition plus all of their descendants. The resulting subgraph will be formed, in general, by a

certain number of disjoint components. The interesting part is that, from the point of view of

the dispatcher, those components can be considered completely different messages, reducing

the number of steps needed to select the right multimethod. If a component contains a single

multimethod, the dispatcher can be completely eliminated.

For instance, in graph of Figure 3.2, there are three distinct components, corresponding

to the methods:

msg(B,B)

msg(B,C)

msg(C,B)

Since each of them originates a distinct subgraph, the dispatcher is simply not needed.

By just determining statically the most generic types of the parameters it is possible to deter-

mine uniquely, and entirely statically, the right multimethod to use. This leads to a massive

59

3. The Language

improvement in the call time, and, more generally, to a drastic simplification of the dispatch-

ing calls and the related tables.12

The point of the discussion is
AA

ABBAAC CA

BBBC CBCC

Figure 3.2.: Static resolution of multimethods

that, although the current test im-

plementation is not optimised in any

way, the overall language definition

is designed to allow a very efficient

implementation, likely to be com-

parable in speed to C++ and sim-

ilar languages, despite the use of

multimethods and its being a “pure”

object oriented language. The fact

that all of the data data usable in

the language has to be treated in

the form of objects of equal behaviour, instead, opens the door to a variety of different im-

plementations, suitable to different circumstances, making the language a perfect candidate

for the realisation of an orthogonally persistent system, as this project shows.

12The example refers to a small hierarchy in which a class A has two subclasses B and C – the ability to
distinguish statically between the methods is retained, for instance, adding further unrelated subclasses to B
and C. This is due to the fact that statically it is always possible to discover whether a class is a subclass of
B or C, and therefore only one of the three methods is usable, whatever the complexity of the hierarchy, as
long as B and C do not have common descendants.

60

4. Design

The work described in this report aims at the creation of an orthogonally persistent imple-

mentation for the language defined. This chapter contains an overview of the required work

and an analysis of the possible design choices. The motivations behind the adoption of some

technical solutions versus others will be explained. The following Chapter 5 will show how

those ideas have been put into practice to obtain a working implementation.

Figure 4.1 summarises the preexisting architecture of the test implementation, and the

structure of the new system. The central idea is to replace the simple memory manager with

a more general purpose and persistent support.

Language Compiler

Standard
libraries

Runtime
support

Compiled
Code

Source code

C-Compiler

Memory + Conservative GC

Language Compiler

Standard
libraries

Runtime
support

Compiled
Code

Source code

C-Compiler

Sphere

Virtualisation Layer

Figure 4.1.: The new system structure

The new support is composed by the persistent store, Sphere in this case, plus an inter-

mediate layer, which adapts the calling interface of the store to the needs of the language,

offering additional services. This intermediate layer is called the “Virtualisation Layer,”

since its function is to decouple the generated code and the runtime support from the spe-

cific details of the store in use and the architectural details of the host operating system,

offering therefore a “virtual” environment which can support the execution of the running

61

4. Design

program. To achieve a better modularity, the new layer is not specifically targeted to the

specific language here described, but its design should be general enough to be reusable in

other contexts. The previous implementation of the compiler needs to be modified, although

not dramatically, to conform to the new calling conventions dictated by the new execution

environment and to implement a new support for recovery.

Section 4.1 describes the set of functionalities required from the new Virtualisation

Layer, and the design choices that have been subsequently adopted during its development.

Section 4.2 describes the modifications that are needed by the existing compiler, and the

which of its components need to be revised. In this chapter, the term “user program” will

refer to the source program written in the source language, while the term “user code” will

refer to the output of the compiler, or to an interpreter or a virtual machine running the same

program. The entire discussion assumes the use of persistence by reachability.

4.1. The Virtualisation Layer

The purpose of the virtualisation layer is to offer a simple interface that allows the running

code to use system specific features (object store, memory pool etc.) in a simple way. In

other words, the virtualisation layer is the component which offers the required set of system

functionalities to the code produced by the language compiler while insulating it from the ac-

tual object store in use, the algorithms used for the handling of the memory space, etc. From

the point of view of the running programs, this is the only visible interface; therefore, the

set of calling conventions must match the needs of the user code. Given that both parts (the

virtualisation layer and the modified compiler) were designed more or less simultaneously,

the interface between the two could have been structured in a variety of ways, according, at

least, to the following criteria:

1. the memory management could be enclosed in the virtualisation layer or delegated to

the user program or to the runtime support specific to the language.

2. consequently, the layer could offer the programs a mechanism to load/unload objects

or offer, instead, objects already mapped in memory

3. the access to the memory could take place in terms of a unique memory space or

maintaining the individuality of objects

4. the unit of manipulation of memory buffers could be a memory page or an object

5. the checkpoint operation could be explicit or performed automatically by the layer

62

4. Design

6. the compiled program could be requested to perform residency checks on every access

to pointers (to ensure that the referred object is already available in memory), or the

virtualisation layer could set up a trapping mechanism to detect all accesses to objects

not yet resident, and perform transparent loading on demand.

For what concerns the management of the memory space, not all the stores available are

capable of handling autonomously memory buffers, and in this specific case Sphere, while

offering a very useful set of primitives to perform swizzling and unswizzling of pointers

inside memory blocks, does not manage the allocation or disposal of main memory. On the

other hand, automatic memory management is a common requirement for most of modern

languages, and it is indeed required by the language defined. Therefore, it definitely did

make sense to incorporate some form of memory management into the virtualisation layer.

The loading/unloading of objects can be managed by the user code (by explicitly sepa-

rating the operations of memory allocation and transfer from/to the object store) or automat-

ically performed by the store, so that objects are presented to running programs as memory

blocks and the mapping between persistent identifiers and memory addressed can be poten-

tially delegated completely to the underlying layer. While the first option would allow user

programs to use memory independently from the actual use of objects, therefore offering

a better support for languages which are not completely object oriented, the second choice

simplifies the automatic swizzling/unswizzling of pointers, which can be performed in any

case autonomously by the virtualisation layer. The actual details of the algorithm used to per-

form those operations remain hidden from the user code, and can be replaced subsequently

if necessary. The result is a simplification of the calling conventions needed to use the in-

termediate layer. With the intent of keeping the code produced by the compiler as simple as

possible, the second option has therefore been selected.

Access to the memory can be offered in the form of a flat, single memory space or

instead keeping track of objects and their location. The first option is especially suitable

for legacy systems, in which it is difficult to know in advance the structure of data, the

location of pointers and their pattern of access, while the second option imposes a more

restrictive usage, requiring the user code to follow stricter rules while creating and using

memory objects. Notably, the first technique is often used in a class of persistent operating

systems known as Single Addressing Space Operating Systems [Voc98][SM98b], in which

there is essentially no distinction between pointers and persistent identifiers.

Although the first option is much more general, the aim of this virtualisation layer is

to offer support primarily to object oriented languages, in which the structure and identity

of objects are well known. Since keeping track of objects allows a much simpler internal

implementation, and a straightforward mapping of the objects used by the user program on

63

4. Design

the data structures used by the store, potentially enhancing efficiency, the second choice has

been preferred.

Deciding whether to use an object or a page, as a basic memory manipulation unit, is a

related issue. Some stores are based on pages, while others on objects. Usually the store or-

ganisation reflects the intended scope of use for the store: handling pages is usually preferred

in systems targeted to the porting of legacy systems, while handling objects is generally re-

lated to systems based essentially on objects, as are most modern programming languages.

Even in this second case, however, there is often some form of interaction with the page

structure dictated by the underlying hardware architecture.

Almost all of the microprocessors commonly available on the market, in fact, organise

memory in pages of a fixed size, usually of a few kilobytes. Consequently, the page is

often also the smallest unit of memory on which it is possible to specify individually access

restrictions. This influences the algorithm used for object eviction, since the hardware can

only assist while detecting if an entire page has been changed, but not a single object in the

case in which a page contains more than one object. Given that the average size of an object

in a system can be much smaller than a page size, the implications on the store architecture

can be significant. A similar argument holds for disk space, which is organised in disk

blocks.

The virtualisation layer described should be as general as possible, and on the other hand

it is the underlying store that ultimately dictates the concrete unit of storage, which means

that neither of the two choices (pages vs objects) for the layer interface can be ideal un-

der all circumstances. To be coherent with the previous choices, however, and to keep the

interface simple, it seems reasonable not to request the user code to deal with the actual sub-

division of memory in pages. The allocation unit will, therefore, be the object, although the

virtualisation layer is left free to manage pages individually in the internal implementation.

The checkpointing operation could be explicitly accessible via a specific call or instead

performed automatically by the layer according to some criteria, such as the lapse of a time-

out since the last checkpoint, or a certain number of object updates in memory. Allowing

the generated code to perform explicit checkpoints can be useful, for instance, during the

initialisation stage, to ensure that a proper initial stage from which to recover the state of the

program is stable in the store. On the other hand, without an automatic form of checkpoint-

ing, the virtualisation layer would have to rely entirely on the running program for a proper

periodic checkpointing, either with some construct available in the language or through calls

embedded by the compiler into the generated code. The risk would be to run out of mem-

ory buffers to hold the modified objects if the checkpointing call is not invoked frequently

enough.

64

4. Design

The two options, however, are not mutually exclusive. It is possible to let the virtualisa-

tion layer perform automatic checkpoints when needed while still preserving the option of

an explicit call to ensure a complete stabilisation of the store at critical points. This choice

is made for the current design of the virtualisation layer. It could be argued that, since auto-

matic checkpoints are performed unknowingly to the program, the user code must constantly

take care of maintaining the state of all the objects in a situation from which a recovery is

possible, which can be rather difficult. To reduce the complexity of the problem, part of

the calling convention will specify a finite set of conditions in which the virtualisation layer

can decide to perform autonomously a checkpoint, allowing therefore the user program to

proceed in discrete steps between “critical points,” which are the ones in which the layer can

act automatically.

An alternative solution could be not to let the virtualisation layer perform automatic

checkpoints, and just to abort computation in an emergency situation. In that case, though,

the user code would be required, as mentioned, to perform frequent calls to the checkpoint-

ing routine, possibly much more frequent than necessary, therefore reducing efficiency. The

checkpointing calls would represent, in that picture, just another aspect of the same subdi-

vision of the execution flow in small steps. Avoiding unnecessary checkpoints is probably

worth the little extra effort needed to take care of the situations in which an automatic check-

point can occur.

The last point concerns the need to have objects actually resident in memory when they

are accessed. The two possible options are either requiring the user code to perform resi-

dency checks before every pointer dereference or instead to use a transparent mechanism to

perform the loading of objects on demand. The second option requires less operations during

the normal program executions, but can only be used if the virtualisation layer has control

over the memory space. Since this is our case, according to the choices already made, the lat-

ter option is certainly viable and, as an added advantage, could help to reduce the complexity

of the code produced by the compiler. It is therefore the choice adopted in this design.

Summarising, here is the set of design choices:

� the virtualisation layer manages the memory automatically

� objects are presented to the user code as memory chunks

� the unit of memory management, as far as the user code is concerned, is the object

� objects are automatically loaded/evicted, and the user code does not need to perform

residency checks

65

4. Design

� the user code does not need to perform explicit checkpoints, but has to be aware that

automatic checkpoints can occur under well defined conditions. The option of per-

forming explicit checkpoints is still available.

As additional, desirable characteristics, the virtualisation layer should moreover:

� be easily modifiable to accomodate different underlying stores to be used

� be, wherever possible, independent from architectural details like page size, 32/64 bit

addressing, etc.

Acccording to this set of guidelines, the existing implementation of the language compiler

must be adapted to use the virtualisation layer as the main component of the runtime envi-

ronment.

4.2. The Language Compiler

The previous implementation of the compiler worked by processing a source file written

in the source language and generating C code, which was then compiled, together with a

standard library and a minimal runtime support, to produce an executable program. The

resulting code allocated objects exclusively in memory, and did not offer any form of real

persistence. To offer a minimal form of automatic memory reclamation, the code was linked

with the Boehm-Demers-Weiser conservative garbage collector, which, although not an exact

garbage collector, was suitable to the needs of the test implementation.

The minimal alterations to be performed on the existing compiler concerned, therefore,

the removal of the Boehm garbage collector, the substitution of the memory allocation rou-

tine with primitives offered by the virtualisation layer, and the transfer into objects of all the

system structures needed to fully recover the state of the running program. The part of the

compiler which produces the actual code needed modifications to accomodate the new style

of calls used by the newly designed virtualisation layer. Furthermore, the standard runtime

code, which offers the set of primitive classes and methods, needed similarly to be adapted

to the new environment.

Apart from the necessary changes, several other modifications or improvements could

have been introduced in the compiler, like the change for the output format from C source

to some other format, or the substitution of wrapper objects, previously used for primitive

types, to increase efficiency. The possible design options ranged therefore from minimal

changes to a complete overhaul of the existing compiler. Mainly due to time constraints,

the choice adopted was to introduce, at this stage, as little change in the existing code as

66

4. Design

possible, so as to obtain in a short time a prototype relying on the logic and the code of

the existing implementation. That decision avoided the risks and the possible high time

penalty involved in the creation of a brand new implementation, or in radical changes on the

existing code. It has to be noted that the option of applying improvements to the compiler

remains open for further developments of the project, especially given the genericity of the

virtualisation layer, which can be used, if needed, to accommodate a completely different

compiler implementation.

To perform the required changes to the compiler (system structures into objects, user

code adapted to the virtualisation layer and modified libraries) the work could have been

potentially very complex. Fortunately, a modular architecture was already in place in the

existing implementation, and therefore the set of changes were limited to a few modules.

Figure 4.2 shows a diagram of the structure of the previous implementation, with an indi-

cation of the parts that needed to be changed. In particular, the code generator works is

syntax-directed, which implies that, while the actual code generation steps had to be revised,

the overall structure of the parsing productions was left unaltered.

Preprocessor

Standard
libraries

Runtime
support

Compiled
Code

Source code

C-Compiler

Syntactic Analysis

Semantic Analysis

Syntax-directed Code Generation

Memory / Virtualisation Layer

Figure 4.2.: Modifications required by the compiler

67

4. Design

The next section contains a general description of the concrete implementation choices

and the main algorithms adopted. It should be noted that the current implementation has

no pretense of being a complete and efficient system. Instead, it should be considered an

instrument to show that a certain result can be obtained. Since the need to obtain a work-

ing prototype was greater than achieving the maximum efficiency, many aspects related to

performance have been carefully considered and then happily ignored, both during the devel-

opement of the virtualisation layer and that of the language compiler. It is worth pointing out,

however, that the architectural choices and the design of the language have had the efficiency

factor as one of their main driving aspects. An alternative, more efficient implementation can

be obtained while maintaining the same techniques and overall structure.

68

5. Implementation Overview

5.1. The Virtualisation Layer

As previously described, the virtualisation layer must manage memory allocation and offer a

transparent support for the loading on demand of objects, their eviction and automatic check-

pointing. The obvious way to achieve such a result is to use the native, hardware assisted

facilities of memory protection, offered by all of the modern hardware architectures. For in-

stance, by imposing that a page of virtual memory cannot be read or written it is possible to

obtain an exception for every attempt to access the corresponding memory area, and there-

fore transparently loading the corresponding object or objects before resuming execution.

Additionally, by protecting a page from write attempts, it is possible to force an exception to

be taken whenever an object is modified in memory, so as to keep track of which among the

objects resident in memory needs to be saved in the store before freeing the memory buffer

for later reuse, which helps avoiding unnecessary updates on disk for those objects which

have been only read since the last loading, increasing therefore the overall efficiency.

It would have been rather complex to access the hardware memory management unit

directly. First of all, accessing the MMU would have required a detailed study of the specific

hardware details of the platform in use, with the possible need to introduce very system

specific code written in assembler language, and a strong limitations to the portability of the

resulting software would have followed. Furthermore, the development of the system needed

to take place in the context of a host operating system (a Unix variant, in this case), and in

all modern operating systems there is already a native mechanism of virtual memory which

uses the MMU, preventing its direct use by user programs. To avoid those problems, the only

viable alternative was to use the system calls mmap()/unmap(), which, although generally

used to perform file mapping operations, can be used alternatively to protect arbitrary areas

of the user virtual memory space, in a way suitable to implement the protection technique

described. The downside is a little penalty in performance, due to the extra overhead imposed

by the operating system.

The next step was to decide which mechanism to use to manage the actual loading/unloading

69

5. Implementation Overview

of objects, and their automatic swizzling/unswizzling. After a brief investigation, the more

promising and simple technique appeared to be to use “pointer swizzling at page fault time”,

in a way similar to the one described in relation to the Texas Store[SKW92].

The basic idea is rather simple: whenever an object is requested for the first time, its

persistent copy is loaded from the store and all the references to other objects (in the form of

persistent identifiers) that are contained in the object itself are checked. For all the references

to objects not already resident, an area of virtual memory of the size of the referred object

is preallocated, but not attached to any physical memory, and the persistent id is replaced by

the pointer. As soon as any of those “ghost” objects is accessed, an exception is thrown, the

object is loaded and again its references scanned, and so on. The following diagram can help

to clarify the mechanism.

…

Ptr X

Ptr Y

After an access to memory at address XOne objects is physically present, the other three

are allocated (but not loaded) in virtual memory

…

Ptr X

Ptr Y

…

Ptr W

A A

X

Y

Z

X

Y

Z

W

Figure 5.1.: Pointer swizzling at page fault time

When location X is accessed, the corresponding object is loaded from the disk storage

and its references to further objects checked. Right after the object is loaded from disk, its

references to other objects are in unswizzled format, that is in the form of persistent identi-

fiers of other objects. Each of the references is checked against a system table in which the

association between persistent identifiers and virtual memory addresses is kept. If the object

referenced is already present, its address is simply substituted to the persistent id, otherwise

an area in virtual memory is preallocated but not mapped onto any physical memory space,

70

5. Implementation Overview

and the newly created association between virtual memory address and persistent id is added

to the system table.

The starting point of all the chain is the persistent root: to initialise the algorithm it

is sufficient to preallocate the space of the root object and to store in the table its address

in memory and its pid. The first access to memory must happen inside the root, therefore

the first object will be loaded and swizzled and from this point on the algorithm will work

as previously described. While the preallocation of the space for referred objects is done

immediately, the actual loading happens “lazily”, that is only when the objects are used.

The algorithm described for the Texas Store performs actually the loading and swizzling

operations in terms of pages, while in this implementation, since most of the work is done on

objects, the preallocation of memory buffers takes place one object at a time; the principle

remains the same in both cases. There are some implications on the efficiency, since at the

hardware level the architecture is based on pages; the issue will be discussed soon.

From the description of the algorithm, it follows immediately that the virtualisation layer

needs to deal with three different kinds of storage: virtual memory space, physical memory

and disk storage. Each of these three resources is finite, and the need for the recycling of

space in each of them has to be kept into consideration. This subdivision leads logically

to a first organisation of the virtualisation layer on three different levels, each of which has

to deal with one specific kind of storage and is implemented by a distinct software mod-

ule. In addition to those modules, other components can be defined to handle different

resources: class definitions (the object structures must be known to perform correctly the

swizzling/unswizzling operations), error conditions, hardware dependent aspects, and sys-

tem tables. In the following diagram the main components and their relations are repre-

sented. A description of the function of the various parts will follow, while a more detailed

explanation of the interface available to the user code is available in Appendix A.1.

While this kind of organisation is not the only possible one, it proved to be quite effective

to keep the overall complexity of the project low, and to simplify the maintenance of the code

during the development.

5.1.1. Virtual Manager

The Virtual Manager is the most external layer, and exports towards the user code the main

functions needed to allocate memory, in the form of objects and classes. To perform the

actual initialisation of objects and classes, the Virtual Manager makes use of the routines

offered by the Physical Manager and the Class Manager, described below. In the current

implementation, the virtual memory space is never reused, and therefore the user code can

be informed, through the Error Manager, that an exception has occurred if the available ad-

71

5. Implementation Overview

Standard
libraries

Runtime
support

Compiled
Code

Virtualisation La er

Sphere

Virtual Manager

Physical Manager

Backing Manager

Abstraction
Manager

Error
Manager

Class
Manager

Map
Manager

Figure 5.2.: Virtualisation Manager

dressing space is exhausted. The user code can then perform a checkpoint of the current

state, ask the virtualisation layer to reinitialise, and resume the computation as if nothing

happened. An alternative implementation could reuse the virtual memory space incremen-

tally, and some interesting ideas about applicable techniques are described in the work by

Wilson and Kakkak in reference to the Texas Store[WK92].

5.1.2. Physical Manager

The Physical Manager controls the use of a pool of physical memory pages, which are at-

tached as needed to the different areas of virtual memory allocated by the Virtual Manager.

The binding of a physical memory area to a virtual address can take place explicitly during

the creation of a new object, or automatically if an access to an unmapped address of vir-

tual memory is detected. The Physical Manager has therefore the responsibility of handling

memory fault exceptions, and keeping track of which objects are allocated but not resident,

resident but not modified since the last checkpoint, or modified and to be updated on disk.

Added functionalities of the Physical manager include the handling of objects which are

guaranteed to stay permanently in physical memory (“permanent objects”). Those objects

72

5. Implementation Overview

are always treated like multiple persistent roots and are guaranteed not to generate implicit

checkpoints when accessed, which makes them ideal to store system structures. At the lower

level, the availability of a single persistent root is required from the disk store.

The Physical Manager is able to detect if the available physical memory is exhausted and

to evict objects in order to accommodate new ones, according to the needs of the running

program. The choice of the victim for eviction is delegated to the Map Manager. In the

current implementation, the victim is transferred to the object store in any case, even if it is

not reachable from already persistent objects. This is, of course, a source of considerable in-

efficiency, since it implies many unnecessary writes on disk of objects that are not reachable

anyway, and extra work on the disk-based garbage collector of the object store. Nontheless,

the present implementation can be adapted with relatively little effort to detect which objects

are certainly not reachable while in memory and therefore do not need to be transferred to

the object store.

5.1.3. Backing Manager

The Backing Manager is the only component that has knowledge about the specific details

of the object store in use. It offers calls for the preallocation of a new object (obtaining a

new persistent identifier), to set and get properties about the persistent root, to load an object

from the store into memory and to write it back. A special function is used to inform the

Backing Manager that a new object is initialised and ready to be written for the first time.

All of these calls constitute the only interface through which the other modules are al-

lowed to access the disk store. Internally, the calls can be remapped onto the native functions

and calling conventions required by the store as needed, offering enhanced flexibility. The

current implementation of the virtualisation layer uses Sphere as its concrete object store on

disk, but only the Backing Manager has knowledge of the way in which Sphere works. In

particular, the function used to declare a new object as initialised is not directly connected,

as it could appear, to the algorithm used by Sphere to perform fast first writes[PAD98]. The

newly created objects are in fact kept exclusively in memory even after the Backing Manager

has been told that the objects can be written for the first time. This allows the user code to

alter the more recently created objects in memory again and again, until there is the need

to perform a checkpoint. At this point Sphere is invoked, and the actual first writes of the

pending objects are performed, reducing the total number of disk writes required. In other

words, the calls which are offered to the upper levels by the Backing Manager and the real

operations performed on the store are decoupled, and there is no preestablished connection

between the two interfaces. In this sense, the Backing Manager acts like the lowest level

“wrapper” around the disk based store, hiding completely the real architecture of the latter.

73

5. Implementation Overview

The checkpointing logic is managed primarily by this module, since its behaviour is

closely related to the structure of the underlying store, but some information is obtained

from the Physical Manager using its accessible interface (no global data is shared between

modules, which enhances the independence of the respective implementations). The check-

point operation ensures that the current state of the objects is safely stored on disk, and

through the Physical Manager, marks all objects currently in memory as updated. From this

point on, the Physical Manager will keep track of the objects that have been modified at least

once, plus all the newly created ones, so as to prepare a new list of objects that need to be

saved during the next checkpoint.

5.1.4. Class Manager

The Class Manager is used to define the structure of objects, which has to be known to the

system to enable the correct swizzling/unswizzling of references when required. To enable

other modules to perform operations on the references contained in an object without having

to be concerned with the actual object structure, the Class Manager offers suitable iterators

that perform the scanning of all the references in an object, or a subrange of them, invoking a

callback routine. The current call used to define a new class is rather simplified, and assumes

that all of the references are actually grouped at the beginning of the object. A more generic

definition can however be added to the current one without prejudice for the existing inter-

face. Once created, the classes can be accessed only through their class identifiers, which

remain unchanged if the program is stopped and resumed. There is currently no support for

modifications in the class structure once the class has been created, and no provisions for

evolution have been included at this stage.

5.1.5. Error Manager

The Error Manager includes a generic interface to handle errors which could be generated in

various circumstances by the system. A list of error identifiers is provided, as is a function

that returns the error message in a textual form given the error id. The default behaviour of

the Manager in case of an error, which consists of printing the error message and aborting ex-

ecution, can be overridden by installing a custom error handler, useful to react appropriately

to some recoverable error conditions.

5.1.6. Abstraction Manager

The Abstraction Manager is a simple utility module which encapsulates some hardware spe-

cific aspects, mainly by offering definitions of standard types which are guaranteed to have

74

5. Implementation Overview

a known size in memory (integers, signed and unsigned, whose size is exactly 8, 16, 32 and

64 bits), and defining implementation-specific types for pointers, persistent identifiers and

references (whose type is essentially the union type of the previous two).

5.1.7. Map Manager

The Map Manager is used to maintain some of the main system structures essential to keep

track of the objects in use, their address in the virtual memory and other attributes. The three

maps currently managed are as follows:

� the association between persistent identifiers of objects and their virtual memory ad-

dress

� the list of the objects which are currently resident in physical memory

� the list of critical objects which are marked as “permanent” and are not eligible for

eviction (although their state is saved together with the state of all the other objects

during a checkpoint)

Since this module has knowledge of all the resident objects, their position and their size, the

Map Manager is the perfect candidate for handling the task of selecting a victim for eviction.

The current simple algorithm used, which is probably not the best one, selects as a victim

the object that has been resident in memory for a longer period of time.

5.1.8. Objects and Pages

A critical issue is the actual mapping of objects into pages, since the hardware assisted

control of memory access is usually available only for entire pages, whose typical size may

be considerably bigger than that of an object. There are several techniques that can be used

to remap objects onto pages. The first, and obvious one, is to use an integer number of pages

for every object, whatever the object size. While this very simple technique allows us to

detect individual accesses to objects, the side effects are a waste of virtual (and physical)

space, since large portions of each page can remain unused, and additionally a significant

load on the memory management unit, since an independent mapping has to be established

for each object, which reduces the effectiveness of the MMU translation cache. On the

other end, a strategy finalised to obtain the maximum occupation of pages could try to pack

together objects, or parts of them, in each page. The effect, in this case, is that it is no longer

possible to use the page faulting mechanism individually for each object. Once a page has

been accessed, all of the objects preallocated in the same page would have to be loaded

75

5. Implementation Overview

(and swizzled) at the same time, even if they are not needed by the present computation.

In alternative to those two solutions, a more complex strategy, involving objects moving in

memory, indirect pointers or other techniques, could to be used. An intermediate approach

can be to use the MMU to map a single page of memory multiple times using different virtual

addresses, one for every object. The objects in the same page could therefore be loaded all

in one step, but the actual swizzling (and preallocation of the referred objects, with relative

binding of further virtual memory addresses) can be postponed to the actual access time of

the individual objects. Still, other solutions are possible, although there are obvious limits

on the effectiveness of a memory management unit designed to handle pages when used to

manipulate objects. In this specific case, to keep this implementation as simple as possible,

the first, naïve technique has been used, although it would be definitely advisable to adopt a

more sophisticated approach in a successive implementation.

5.1.9. Automatic Checkpointing

As previously mentioned, the design choice was to allow the system to perform automatic

checkpoints under well defined conditions. That choice relieves the user code from the

task of explicitly invoke the checkpointing operation, and permits the virtualisation layer to

automatically reclaim buffer space, should there be no more free memory available. On the

other hand, the user code must have a certain degree of control about when an automatic

checkpoint can occur, so that the checkpointed state of the objects can be kept consistent and

usable for a possible restart of the execution.

As previously described, any access to memory can potentially trigger a page fault ex-

ception, to which the system responds by automatically loading the object that has been

preallocated on that memory area. During the loading routine, therefore, the system could

discover that there is no longer any physical memory available, and that one or more evic-

tions of objects currently in memory are necessary. The point in the code where the eviction

takes place is a perfect candidate to call, every once in a while, an automatic checkpoint: the

routine gets called ofted, it is invoked transparently, its occurrence is synchronous (when it

happens) with precisely defined operations in the user code. The only other obvious way to

obtain automatic checkpoints, having a separate thread performing the operation, would be

much less straightforward and would require some form of explicit synchronization between

the thread and the user code.

The downside is that, if no other mechanisms are in place to control when the checkpoint

can occur, potentially in every point in the user code where an access to memory is made, a

snapshot of the objects state could be taken. The effect is that the user code would have to

ensure that there is a consistent condition during every access to memory, which is clearly

76

5. Implementation Overview

too strict a requirement to be practical. A simple solution, however, can be obtained by intro-

ducing objects that are guaranteed to stay permanently in memory, and that therefore do not

generate memory faults (and, consequently, implicit checkpoints) when accessed. By storing

critical system structures inside permanent objects, it is possible to reduce significantly the

number of occurrences of possible implicit checkpoints, hence maintaining consistency in

the critical points while keeping the user code reasonably simple. Another factor that can

help to organise the user code to maintain consistency in the state checkpointed is that during

a memory write it is very easy to guarantee that the (possible) automatic checkpoint will be

completed before the actual modification of the memory content. To be precise, a memory

write can trigger a page fault exception. If that happens, an automatic checkpoint may be

performed by the exception handler. The handler has just to wait for the checkpoint to be

completed, evict some objects, load the object requested and return to the user code, to the

same instruction that caused the exception in the first place. It is only at this final stage that

the real memory write will take place. It is therefore known to the user code that, if an auto-

matic checkpoint happens while a write is performed, it is enough to ensure that the program

can recover from the saved state as it was before the memory write.

Given the mentioned criteria, a range of possible options become available to ensure that

any checkpoint will save a snapshot of the object’s state in such a way that an easy recovery is

possible. The simple schema suggested here, which is the one used in the current adaptation

of the language compiler, works by keeping a “program counter” inside a permanent object,

in the following way:

•
 reads / computations

•
 reads / computations

•
 reads / computations / write during the final write, an automatic checkpoint
may happen before the actual object modification

•
 PC changed to “n”
 the program counter is in a permanent obj -> no checkpoint

jump_point_n:

•
 reads / computations

•
 reads / computations
any automatic checkpoint in these instructions would save
the changed object and the new PC together

•
 reads / computations / write a checkpoint may happen before the new object modification

•
 PC changed to “n+1”
 no implicit checkpoint!

jump_point_n+1:

…

…

if the execution flow arrives here, the PC
is in synch with the new state of the object

again, if the prog. arrives here the PC
and the new objects state are in synch

77

5. Implementation Overview

Using this technique, any automatic checkpoint that should occur at any point in any of

the blocks will save the program counter together with the state of all the objects modified

up to that point. Since the following read operations from objects do not modify any internal

state, the execution can be safely resumed from the matching jump point, should the program

execution be interrupted for any reason. This very simple but effective mechanism allows, in

a straightforward way, to make sure that it will always be possible to resume the execution

from a consistent, checkpointed state by just jumping to the entry point corresponding to the

saved copy of the program counter. For a practical example of how the actual code generated

by the compiler looks like, we refer the interested reader to the example code in Appendix

A.2.

Summarising, an automatic checkpoint can take place every time an object eligible for

eviction is accessed, or when a new object is created. By saving system critical information

in a permanent object, it is however possible to organise the generated code to always have

consistent system conditions saved by any automatic checkpoint. If needed, the user code is

also free to invoke an explicit checkpoint as often as desired.

5.2. The Language Compiler

According to the previous discussion, the language compiler had to be changed to accommo-

date the new runtime environment, as mentioned in Section 4.2. The three components that

had to be changed are the Code Generation module, the Runtime Support and the Standard

Libraries. A description of the modifications applied to those modules will follow.

5.2.1. Code Generation

The component that produces the output code from the compiler (in the form of C source)

is built using lex and yacc, with C fragments. That implies that the crucial part of the code

generation is performed by C code embedded into the productions LALR(1) used by the

parser[ASU86], in a syntax-directed way. Since the running environment is now different,

the semantic actions inside the rules have to be changed accordingly; however, the overall

structure of the rules can remain largely unchanged. The differences in the new code that

must be produced, with respect to that produced by the old compiler, are mainly the follow-

ing:

� the language stack was previously implemented using the C stack; this has to be

changed to implement recoverability (see below)

� consequently, the method calling sequence must be modified

78

5. Implementation Overview

� a program counter and a jump table have to be added to allow the execution flow to

restart from an internal point in the user code following a resumption

� the object allocations must be changed to use the new routines, and the virtualisation

layer must be informed about the structure of the classes used in the program

The previous version of the compiler worked by transforming every method of the language

in a C function, so that the handling of parameter passing and recursive calls was handled

by the C compiler. That kind of approach is no longer possible, mainly because the stack

may need to be saved together with all the other objects, and possibly restored following a

recovery. Extracting the data from the native C stack would be quite complex and dependent

on the hardware platform, therefore the obvious choice is to transfer the stack into system

objects. In this way, the stack state is saved automatically whenever a checkpoint takes place.

The handling of the stack frames must be made explicit, in that, as in any ordinary compiler

implementation, the parameters are pushed on the stack just before the message dispatching,

and the return value has to be extracted from the stack at the end. The local variables are now

kept in this new implementation of the stack, and allocated/deallocated at the beginning/end

of every method. The stack is maintained as permanent objects which, as mentioned, also

work as persistent roots. This implies that the objects which are preserved in the store are all

those reachable, directly or indirectly, from any of the stack frames.

The code produced is now divided (from a logical point of view) in basic steps, following

the structure described in Section 5.1.9, and a jump table is built during the code generation.

The logical program counter maintained by the user code is stored in an additional permanent

object, named “control block” together with some other system critical infomation (notably,

the stack pointer). The initialisation of all the classes related to the user program is performed

by an appropriate function, which is invoked once during the first run of the code.

5.2.2. Runtime Support

The runtime support offers a few support routines needed during the execution of the user

code, the most important of which is the message dispatcher. Only minor modifications were

required by this module, the most relevant being the introduction of a specific initialization

routine necessary to set up properly the virtualisation layer before the actual user code execu-

tion. If the program is running for the first time, the virtualisation layer is opened requesting

the creation of a new store, the standard classes are added to it and the system objects al-

located; if, on the other hand, the program is resuming a previously interrupted execution,

the existing store is reopened and the runtime context restored, after which the execution can

restart from the entry point corresponding to last saved program counter.

79

5. Implementation Overview

5.2.3. Standard Libraries

The standard libraries offer a set of predefined classes and methods, ranging from functions

needed for string manipulations and arithmetic operations to basic input/output. The code

implements those basic functions using hand-written code that respects the calling conven-

tions imposed by the compiler. Being tightly coupled with the implementation aspects, this

module had to be rewritten almost entirely, mainly to conform to the new structure of the

stack and the new conventions concerning the parameters and the return value. To avoid

many repetitions of similar code, especially in the arithmetic routines, and the introduction

of possible inconsistencies, the implementation of the standard libraries relies massively on

macros, which allow the code to remain reasonably manageable without impacting on the

execution speed. In this case, the structure based on macros helped to reduce the time nec-

essary to rewrite the necessary routines.

80

5. Implementation Overview

81

6. Conclusions

6.1. Tests

The result of the programming activity described in Chapter 5 has been a software system

composed by language compiler and persistent runtime environment, structured in accor-

dance with the design guidelines discussed in the previous chapters. To verify that the system

concretely implements a multimethod-based orthogonally persistent language, as expected,

a certain number of tests have been performed on the platform. Some test programs are listed

in Appendix A.2.

6.1.1. Language Tests

The system does not implement in every aspect the language definition of Chapter 3; nonethe-

less, a rather large set of features has been implemented and verified using test programs. In

particular, tests have been used to verify the functionality of classes, methods, messages,

inheritance, multimethods and dynamic dispatching, static type checking and the set of rules

used to avoid ambiguities described in Sections 2.3.2 and 3.14.1, constructors, control struc-

tures, type tunnels, arithmetic functions, multidimensional arrays, user defined operators and

the other syntactic aspects.

6.1.2. Recoverability

To check the ability to continue in conditions of exhaustion of virtual memory space, the

virtualisation layer has been recompiled allowing only a very small portion of the address-

ing range to be used. Some test programs have been then run against such an intentionally

reduced memory space. The result, as expected, has been a rapid exhaustion of the available

addressing space and the generation of an exception from the virtualisation layer. Follow-

ing the technique described in Section 5.1.1, the running programs have then automatically

performed an emergency checkpoint and a reset of the system structures, followed by an

automatic resumption of the program execution. As expected, the user code is therefore

82

6. Conclusions

capable of continued execution even when the virtual memory is scarce.

The other crucial test about recoverability consisted in running arbitrary programs and

interrupting their execution at random times. In all the tests performed, without exception,

the system has been capable of resuming the execution of the running program from the latest

automatic checkpoint, showing therefore rather effectively how the recoverability aspect of

the system implemented is fully functional. Some examples of interrupted and resumed

executions are listed in Appendix A.2.

6.2. Possible Developments

The system developed in the context of this project is essentially an instrument to verify

the applicability of some ideas and techniques. As such, its current implementation is not

optimised under several aspects. For instance, the mapping between objects and pages is too

simplistic and inefficient, and a better approach would be advisable.

An important improvement in the allocation of objects and their transfer in the store

would be to implement a policy for temporary objects. While currently all objects, including

temporary ones, are preallocated and saved in the persistent store, delegating the garbage col-

lection to the store itself, a much better performance could be obtained by allocating newly

created objects exclusively in memory. During the eviction stage, a scan of the objects that

were already stabilised and have been modified since the last eviction stage could be used

to determine which transient objects are now reachable from already persistent ones, either

directly or through other transient objects, and therefore need to be promoted to persistent

by allocating and writing them in the store. Obviously, those objects that are not reachable

from persistent ones can be safely discarded, therefore reducing the number of objects ac-

tually transferred to the store and increasing the overall efficiency. Some improvement in

performance should be obtainable just by introducing this last technique, and replacing the

simple data structures used in the present implementation (arrays and linked lists) with more

proper structures like hash tables.

Another area of possible improvement is the language compiler, which still lacks some

interesting aspects of the language, the most important being multiple inheritance. The lan-

guage itself could be redesigned on a more formal ground, possibly including advanced

features like parametric polymorphism, functions as first order objects etc.

The system, as it is at present, relies on a number of different software components, each

of which has different needs in terms of configuration of the host environment.1 This, of

1For example, Sphere is compiled using the Sun Workshop Compiler while the language compiler relies on
features offered by the Gnu C Compiler, some scripts depend on csh and some others on bash and so on.

83

6. Conclusions

course, makes the task of assembling a distribution for general use rather challenging, and a

prepackaged installation kit is not, at the moment, available. For the same reason, a complete

user manual of the system is not included in this report. The non orthogonally persistent

version of the language compiler, however, is available for both Linux and Solaris and can be

installed with relatively little effort. If any reader would like to experiment with that version,

or would like to go through the task of setting up the environment for the orthogonally

persistent version, the author will be more than pleased to offer all the software and assistance

necessary. More information can be obtained by writing to cuneia@dcs.gla.ac.uk.

6.3. Evaluation and Conclusions

All the tests suggest that the system is fully functional with respect to the features that have

been implemented, and in particular for what concerns multimethods and static type check-

ing, orthogonal persistence and recoverability. While the present implementation does not

meet the levels of performance and usability that would be necessary for a production tool,

the system appears nontheless to be remarkably stable and functional, and can be considered

a good indicator of the validity of the ideas and the techniques proposed. In particular, being

a working implementation of a compiler for a multimethod-based, strongly and statically

typed orthogonally persistent language, it shows, with a practical example, how multimeth-

ods can be used in the context of an orthogonally persistent system.

84

6. Conclusions

85

A. Appendix

A.1. The Virtualisation Layer: User Interface

The Virtualisation Layer can be accessed using its user interface, which is briefly described

in this appendix. The codename used during the development is “Ahio”,1 therefore the same

name is recurrent in the interface. All the constants and the function prototypes are available

including the header “Ahio.h”.

A.1.1. Types

The relevant types exported are ptr, ref, classID, permID and classSize.

1. ptr is a generic pointer.

2. ref is a reference to another object. The workspace used into an object to manipulate a

pointer could be slightly larger than the pointer alone. Therefore, whenever a pointer

has to be stored into an object, the space for a ref must be allocated instead.

3. classID is a scalar number which identifies a class. The first class returned will have

classID equal to 1 and the following 2,3, etc. The classID value is guaranteed not to

change across restarts.

4. permID is a scalar number used to identify persistent roots. The first object selected

as permanent will have its id set to 1, and the following 2,3, etc. The permID value is

guaranteed not to change across restarts.

5. classSize is a generic class size. It is guaranteed to be at least as large as an int.

1Biblical name, which means Brotherly or Fraternal. Being a layer whose purpose is to bring together two
different software parts (the language compiler and the object store), the name seemed appropriate.

86

A. Appendix

A.1.2. Functions

The interface is composed by the following functions:

� int OpenAhio(int restart,void *arg);

Used to initialise the layer.

restart must be false (zero) if a new store has to be created. if the value is true

(different from zero) an attempt is made to recover an existing store.

arg is a store-dependant parameter which is passed unaltered to the underlying

store.

� void CloseAhio();

Used to close the store and flush all the buffers.

� classID NewClass(classSize numRefs,classSize numBytes);

Creation of a new class. Returns the identifier to the newly created class.

numRefs is the number of references to other objects desired for instances of that

class

numBytes is the number of bytes of data (non-pointers) desired

� ptr NewObj(classID cl);

Creates a new object. Returns the pointer to the new object.

cl is the classID of the class to which the new object must be an instance

� permID MakePermanent(ptr p);

An existing, already allocated object is made permanent, and works as a persistent

root. Returns the identifier to the new root.

p is the object which has to be made permanent

� void Restart();

All the buffers are flushed and the store is stabilised. All objects present in memory

are discarded and the system is reinitialised.

� void Checkpoint();

Performs an explicit checkpoint. When the function returns, the store is stable.

87

A. Appendix

Nothing else is required to use the layer. The interface is intentionally essential and ex-

tremely simple to use. The new objects created are currently composed by numRefs refer-

ences at the beginning of the objects, followed by numBytes freely usable bytes of scalar

values. All pointers stored into objects must currently refer to the starting locations of other

objects.

A.1.3. Errors

It is possible to intercept the exceptions generated by the layer. The functionality can be used

to bypass the default behaviour, which consists in printing an error message and exiting. An

user defined error handler must have the prototype:

void myHandler(errorDesc e);

The prototype is define with the type “crashHandler”. The new handler can be installed

using:

crashHandler InstallCrashHandler(crashHandler newHandler);

which returns the address of the handler previously active. The personalised crash han-

dler can obtain a textual description of the error with the function:

char *GetErrMsg(errorDesc e);

If the error “e” equals the constant ERR_HostResourcesExhausted, it is safe to call Restart()

and resume the execution.

A.1.4. Customisation

In the current implementation, it is possible to change some default values by defining the

following symbols while recompiling:

MAX_PHYSICAL max physical memory, in kB

MAX_CLASSES max number of classes

MAX_RESIDENT max number of objects in memory

MAX_PERMANENT max number of persistent roots

MAX_FIRST_WRITE an automatic checkpoint if performed when

this amount of new objects have been created

MAX_MAPSIZE max number of objects mapped in virtual memory

88

A. Appendix

A.2. Test Programs

A.2.1. File: BOH/test/test.first

//

// test.first - Antonio Cunei

//

first_example : uses system

{

!main()

{

println("Hello, world!");

}

}

Output:

... execution begins at PC: 0

Hello, world!

89

A. Appendix

A.2.2. File: BOH/test/test.second

//

// test.second - Antonio Cunei

//

second_package: uses system

{

//

// first class definition: glass

//

!glass : super object

{

!glass(): super object()

{

}

!break(a:glass)

{

println("Crash!");

}

}

//----------

//

// second class definition: mattress

//

!mattress : super object

{

springs:long;

!mattress(n:long): super object()

{

mattress.springs:=n;

}

!break(m:mattress)

{

for a:=0; a<m.springs; a:=a+1;

{

println("Sproingg!!");

}

}

}

90

A. Appendix

!main()

{

a:=glass();

b:=mattress(3);

break(a);

break(b);

}

}

Output:

... execution begins at PC: 0

Crash!

Sproingg!!

Sproingg!!

Sproingg!!

91

A. Appendix

A.2.3. File: BOH/test/test.ONE

//

// test.ONE - Antonio Cunei

//

basic_system : uses system {

/*

One comment /* nested? */

// on a line is fine as well

*/

// outside the block

! mytestKclass : super object {

! zipp()

{

"zipp!".println;

}

! main()

{

nl();

print(" The length of the string ""Machiavelli"" is: ");

println(len("Machiavelli"));

print(" While 4+4*(5+3)-7/2 is ");

println(4+4*(5+3)-7/2);

println(" See how smart I am?");

println(2(4));

/*

println(5e3(4));

println(51df(4));

println(51f-(6)(4));

*/

nl();

println(" Let’s try something more difficult, now:");

" The value of (2*3+7.-(4)).*(4+3.*(5)) is : ".print;

((2*3+7.-(4)).*(4+3.*(5))).println;

.nl;

"-------------".println;

.nl;

"Interaction test!".println;

92

A. Appendix

.nl;

" Type something! : ".print;

" You typed : """.+(.readText).+("""").println;

.nl;

"-------------".println;

" Examples of different syntax styles:".println;

" 5.+(6).+(7).+(8).*(2).println : ".print;

5.+(6).+(7).+(8).*(2).println;

" println(*(+(+(+(5,6),7),8),2)) : ".print;

println(*(+(+(+(5,6),7),8),2));

" println((5+6+7+8)*2) : ".print;

println((5+6+7+8)*2);

.nl;

"-------------".println;

" Let’s if I can print special characters! : ""%\""".println;

.nl;

" And now some assorted numbers : ".print;

0.print; " ".print;

1.print; " ".print;

1.-.print; " ".print;

2000000000ul.print; " ".print;

4000000000ul.print; " ".print;

2147483647.print; " ".print;

2147483648.-.println;

true.and(false).println;

false.and(false).println;

.nl;

true.or(false).println;

false.or(false).println;

.nl;

.zipp;

"Done!".println;

.nl;

/*

{

b:=34+8*4-2;

c:=4;

a:=b+c;

a.println;

.nl;

}

*/

93

A. Appendix

if (4<5) {

.nl;

puf:=3;

} elsif (6>3) {

.nl;

puf:=65;

puf.println;

} elsif (7<>9) {

.nl;

} else {

.nl;

}

{

c:=0;

while c<10 {

c.print;

" ".print;

c:=c+1;

}

.nl; .nl;

}

for j:=0; j<10; j:=j+1; {

j.print;

" : ".print;

for i:=0; i<10; i:=i+1; {

i.print; " ".print;

}

.nl;

}

c:="The demonstration is really terminated, now.";

c.println;

}

}

}

Output:

... execution begins at PC: 0

94

A. Appendix

The length of the string "Machiavelli" is: 11

While 4+4*(5+3)-7/2 is 33

See how smart I am?

4.2

Let’s try something more difficult, now:

The value of (2*3+7.-(4)).*(4+3.*(5)) is : 171

Interaction test!

Type something! : 67w ei9w6 84w8o

You typed : "67w ei9w6 84w8o"

Examples of different syntax styles:

5.+(6).+(7).+(8).*(2).println : 52

println(*(+(+(+(5,6),7),8),2)) : 52

println((5+6+7+8)*2) : 52

Let’s if I can print special characters! : "%\"

And now some assorted numbers : 0 1 -1 2000000000 4000000000 2147483647 -2147483648

false

false

true

false

zipp!

Done!

0 1 2 3 4 5 6 7 8 9

0 : 0 1 2 3 4 5 6 7 8 9

1 : 0 1 2 3 4 5 6 7 8 9

2 : 0 1 2 3 4 5 6 7 8 9

3 : 0 1 2 3 4 5 6 7 8 9

95

A. Appendix

4 : 0 1 2 3 4 5 6 7 8 9

5 : 0 1 2 3 4 5 6 7 8 9

6 : 0 1 2 3 4 5 6 7 8 9

7 : 0 1 2 3 4 5 6 7 8 9

8 : 0 1 2 3 4 5 6 7 8 9

9 : 0 1 2 3 4 5 6 7 8 9

The demonstration is really terminated, now.

96

A. Appendix

A.2.4. File: BOH/test/test.TWO

//

// test.TWO - Antonio Cunei

// Checks numeric syntax styles

//

basic_system : uses {

! mytestKclass : super object {

! main()

{

println(2(4));

println(5e3(4));

println(51f6(4));

51f-(6)(4).println;

println(4.2);

println(4.5e3);

println(4.51f6);

println(4.51f-(6));

println(4.2);

println(4.5e3);

println(4.51f6);

println(4.51f-6);

println(18);

println(-18);

println(18w);

println(-18w);

999e.println;

999e99.println;

999.9.println;

999.9e.println;

999e-99.println;

999.9e99.println;

999.9e-99.println;

999.9e-(99).println;

9e-99(999).println;

9(999).println;

9e(999).println;

999e-(99).println;

97

A. Appendix

9e99(999).println;

9e-(99)(999).println;

println(-999e);

println(-999e99);

println(-999.9);

println(-999.9e);

println(-999e-99);

println(-999.9e99);

println(-999.9e-99);

println(-999.9e-(99));

println(-9e-99(999));

println(-9(999));

println(-9e(999));

println(-999e-(99));

println(-9e99(999));

println(-9e-(99)(999));

-999e.println;

-999e99.println;

-999.9.println;

-999.9e.println;

-999e-99.println;

-999.9e99.println;

-999.9e-99.println;

-999.9e-(99).println;

-9e-99(999).println;

-9(999).println;

-9e(999).println;

-999e-(99).println;

-9e99(999).println;

-9e-(99)(999).println;

999e.-.println;

999e99.-.println;

999.9.-.println;

999.9e.-.println;

999e-99.-.println;

999.9e99.-.println;

999.9e-99.-.println;

999.9e-(99).-.println;

9e-99(999).-.println;

9(999).-.println;

9e(999).-.println;

999e-(99).-.println;

98

A. Appendix

9e99(999).-.println;

9e-(99)(999).-.println;

12873e.println;

3e11.println;

971.1.println;

119.1878237683463768732e.println;

7623f-2.println;

567.4e12.println;

0.98765f-99.println;

712.9e-(18).println;

0e-001(91872133).println;

563(98675).println;

652e(1672518).println;

98675e-(3).println;

788e000013(2).println;

11112e-(5)(8761).println;

a:=2e;

for c:=0; c<10; c:=c+1; {

a.println;

a:=a*a;

}

}

}

}

Output:

... execution begins at PC: 0

4.2

4500

4510000

4.51e-06

4.2

4500

4510000

4.51e-06

4.2

4500

4510000

4.51e-06

99

A. Appendix

18

-18

18

-18

999

9.99e+101

999.9

999.9

9.99e-97

9.999e+101

9.999e-97

9.999e-97

9.999e-97

999.9

999.9

9.99e-97

9.999e+101

9.999e-97

-999

-9.99e+101

-999.9

-999.9

-9.99e-97

-9.999e+101

-9.999e-97

-9.999e-97

-9.999e-97

-999.9

-999.9

-9.99e-97

-9.999e+101

-9.999e-97

-999

-9.99e+101

-999.9

-999.9

-9.99e-97

-9.999e+101

-9.999e-97

-9.999e-97

-9.999e-97

-999.9

-999.9

-9.99e-97

-9.999e+101

100

A. Appendix

-9.999e-97

-999

-9.99e+101

-999.9

-999.9

-9.99e-97

-9.999e+101

-9.999e-97

-9.999e-97

-9.999e-97

-999.9

-999.9

-9.99e-97

-9.999e+101

-9.999e-97

12873

3e+11

971.1

119.1878

76.23

5.674e+14

0

7.129e-16

9187213

98675.56

1672519

98.675

2.788e+13

0.08761111

2

4

16

256

65536

4.294967e+09

1.844674e+19

3.402824e+38

1.157921e+77

1.340781e+154

101

A. Appendix

A.2.5. File: BOH/test/test.THREE

//

// test.THREE - Antonio Cunei

//

basic_system : uses {

operator x +j x 710;

operator x -j x 710;

//---------

! complex : super num

{

re,im:double;

! +j(r,i:double): super numZero()

{

+j.re:= r;

+j.im:= i;

}

! println(c:complex)

{

c.re.print;

if c.im<0.0 {

"-j".print; c.im.-.println;

} else {

"+j".print; c.im.println;

}

}

}

//---------

! list : super object

{

! emptyList(): super object() {}

! scanPrint(l:list) {}

}

! nonulllist : super list

{

it:object;

102

A. Appendix

next:list;

! add(l:list,x:object): super emptylist()

{

add.next:=l;

add.it:=x;

}

! scanPrint(l:nonulllist)

{

println(l.it);

scanPrint(l.next);

}

}

//---------

// just as a test: subclass of complex

! plaf : super complex

{

vec: long[-8..-3];

! printme(x:plaf)

{

for a:=-8; a<-3; a:=a+1; {

x.vec[a].println;

}

}

! fillme() : super 2.4+j5.1

{

for a:=-8; a<-3; a:=a+1; {

fillme.vec[a]:=(10-a)*8;

}

}

}

//---------

! main()

{

a:=2e;

for c:=0; c<10; {a:=a*a;c:=c+1;} {

103

A. Appendix

a.println;

}

.nl;

5.0+j3.4.println;

.nl;

//

"Now a list of assorted elements:".println;

.nl;

.emptyList.add(4).add(1.2+j4.7).add("hello").add(912.45*7e91).scanPrint;

.nl;

//

"Finally, a nice array (subclass of complex!?) filled and immediately printed:"

.println;

.nl;

fillme().printme;

"--".println;

fillme().println;

}

}

Output:

... execution begins at PC: 0

2

4

16

256

65536

4.294967e+09

1.844674e+19

3.402824e+38

1.157921e+77

1.340781e+154

5+j3.4

Now a list of assorted elements:

6.38715e+94

104

A. Appendix

hello

1.2+j4.7

4

Finally, a nice array (subclass of complex!?) filled and immediately printed:

144

136

128

120

112

--

2.4+j5.1

105

A. Appendix

A.2.6. File: BOH/test/test.complex

//

// test.complex - Antonio Cunei

//

basic_system : uses system {

operator x +j x 710;

operator x -j x 710;

//---------

! complex : super num

{

re,im:double;

! -j(r,i:double): super numZero()

{

-j.re := r;

-j.im := -i;

}

! +j(r,i:double): super numZero()

{

+j.re:= r;

+j.im:= i;

}

! +(a,b:complex): super numZero()

{

+.re:=a.re+b.re;

+.im:=a.im+b.im;

}

! -(a:complex): complex {

-:=(-(a.re))-j(a.im);

}

! *(a,b:complex): complex {

*:=(a.re*b.re-a.im*b.im)+j(a.im*b.re+a.re*b.im);

}

! complex(d:double): complex {

complex:=d+j0e;

106

A. Appendix

}

! /(a,b:complex): complex {

d:=b.re*b.re+b.im*b.im;

if d=0.0 {

"Division by zero".println;

/:=0.0+j0.0;

} else {

/:=((a.re*b.re+a.im*b.im)/d)+j((a.im*b.re-a.re*b.im)/d);

}

}

! =(a,b:complex): bool {

if (a.re=b.re and a.im=b.im) {

=:=true;

} else {

=:=false;

}

}

! println(c:complex)

{

c.re.print;

if c.im<0.0 {

"-j".print; -(c.im).println;

} else {

"+j".print; c.im.println;

}

}

!complexTest()

{

"The real part of 5.0+j3.4 is : ".print; 5.0+j3.4 .re .println;

"The imaginary part of 5.0+j3.4 is : ".print; 5.0+j3.4 .im .println;

}

}

//---------

! mytest_class : super object

{

! main()

{

a:=4.0+j5.0;

" a = ".print;

107

A. Appendix

a .println; .nl;

b:=3.91-j4.2;

" b = ".print;

b .println; .nl;

c:=a*b;

" c = a*b = ".print;

c .println;

.nl;

"c+b/a + 1.0-j9.3 = ".print;

(c+b/a + 1.0-j9.3) .println;

.nl;

"(b/c).+(a) + 3.2-j4.3 = ".print;

((b/c).+(a) + 3.2-j4.3) .println;

.nl;

"b.+(a/c) = ".print;

(b.+(a/c)) .println;

.nl;

"b.+(a/c) + 1.0-j9.3 = ".print;

(b.+(a/c) + 1.0-j9.3) .println;

.nl;

"12.3+j4.7 * 3.2-j8.25 = ".print;

(12.3+j4.7 * 3.2-j8.25) .println;

.nl;

.complexTest;

.nl;

}

}

}

Output:

... execution begins at PC: 0

a = 4+j5

b = 3.91-j4.2

c = a*b = 36.64+j2.75

c+b/a + 1.0-j9.3 = 37.50927-j7.436585

(b/c).+(a) + 3.2-j4.3 = 7.297561+j0.5780488

108

A. Appendix

b.+(a/c) = 4.028744-j4.072449

b.+(a/c) + 1.0-j9.3 = 5.028744-j13.37245

12.3+j4.7 * 3.2-j8.25 = 78.135-j86.435

The real part of 5.0+j3.4 is : 5

The imaginary part of 5.0+j3.4 is : 3.4

109

A. Appendix

A.2.7. File: BOH/test/test.set

//

// test.set - Antonio Cunei

// Generic Set.

//

set : uses system

{

!set: super object

{

first:object;

extra:set;

!+(a,b:set):set {

while not(empty(a)) {

b:=b+a.first;

a:=a.extra;

}

+:=b;

}

!in(a:set,obj:object):bool

{

in:=false;

while not(in) and not(empty(a)) {

if a.first=obj {

in:=true;

}

a:=a.extra;

}

}

!+(a:set,obj:object):set

{

if in(a,obj) {

+:=a;

} else {

c:=set(obj);

c.extra:=a;

+:=c;

}

}

!-(a,b:set):set

110

A. Appendix

{

while not(empty(b)) {

a:=a-b.first;

b:=b.extra;

}

-:=a;

}

!-(a:set,obj:object):set

{

b:=emptySet();

while not(empty(a)) {

if a.first=obj {

b:=b+a.extra;

a:=emptySet();

} else {

b:=b+a.first;

a:=a.extra;

}

}

-:=b;

}

!pick(a:set):object

{

pick:=a.first;

}

!emptySet(): super object()

{

emptySet.extra:=emptySet;

emptySet.first:=object(); // ignored

}

!set(obj:object): super object()

{

set.first:=obj;

set.extra:=emptySet();

}

!empty(a:set):bool

{

empty:=(a=a.extra);

}

111

A. Appendix

}

main()

{

s:=.emptySet;

s:=s+4+5+"hello"+4.5;

c:=.emptySet+13+"cheese"+4+99+"hello"+4.5+4.6;

d:=s-4-"hello";

s:=s+c;

s:=s-d;

s:=s+919-99;

"And the final content of the set is:".println;

while not(empty(s)) {

x:=pick(s);

x.println;

s:=s-x;

}

}

}

Output:

... execution begins at PC: 0

And the final content of the set is:

919

4.6

hello

4

cheese

13

112

A. Appendix

A.2.8. File: BOH/test/test.rule

//

// test.rule - Antonio Cunei

//

rule : uses system {

//---------

! cmdr : super object

{

!newCmdr(): super numZero() {}

!ops(a,b:cmdr): super numZero() {}

}

! taco: super cmdr {

x:long;

! ops(a,b:taco):taco {

ops:=fit();

}

! fit(): super newCmdr() {

x:=19;

}

}

! mytest_class : super object

{

! main(){}

}

}

During the compilation:

Phase 3 successfully completed.

Class hierarchy and method headers checked.

Phase4: processing...

The method ops(taco,taco) returns a value of type taco;

which is incompatible with the constructor:

ops(cmdr,cmdr) which returns a value of type cmdr:

A method and a constructor cannot have parameters

113

A. Appendix

one subclasses of the other.

114

A. Appendix

A.2.9. File: BOH/test/test.tunnel

//

// test.tunnel - Antonio Cunei

//

tunnel: uses system {

!set: super object {

!set(): super object() {}

!inner(x:set,a:set):a

{

step:=a;

inner:=step;

}

!gruppolo(a:set,b:a,xx:set,yy:xx):a

{

epsilon:=b;

gruppolo:=inner(xx,epsilon);

}

}

!gluz: super set {

!gluz(): super set() {}

!special(c:gluz) {}

}

!main()

{

.gluz.special;

s:=.set;

g:=.gluz;

// this invocation can succeed

// only if the static type

// return is the most specific one.

gruppolo(g,g,s,s).special;

"Success!".println;

}

}

115

A. Appendix

Output:

... execution begins at PC: 0

Success!

116

A. Appendix

A.2.10. File: BOH/test/test.recovery

basic_system : uses system {

! mytest_class : super object {

! main()

{

total:=0;

for j:=0; j<100000; j:=j+1; {

j.print;

" : ".print;

for i:=0; i<10; i:=i+1; {

i.print; " ".print;

}

total:=total+j;

": The sum is now :".print;

total.println;

}

}

}

}

Output:

... execution begins at PC: 0

0 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :0

1 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1

2 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3

3 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :6

4 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :10

5 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :15

6 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :21

7 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :28

8 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :36

9 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :45

10 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :55

11 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :66

12 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :78

13 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :91

14 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :105

15 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :120

16 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :136

117

A. Appendix

17 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :153

18 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :171

19 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :190

20 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :210

^C21 : 0 1 2 3 4 [cuneia@neptune test]$./result 1

Sphere Recovery :: Detected Inconsistent Store

Sphere Recovery :: Redoing lost updates ...

Sphere Recovery :: Undoing loser histories ...

Sphere Recovery :: Store OK

... execution resumes at PC: 109

: The sum is now :210

21 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :231

22 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :253

23 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :276

24 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :300

25 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :325

26 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :351

27 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :378

28 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :406

29 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :435

30 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :465

31 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :496

32 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :528

33 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :561

34 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :595

35 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :630

36 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :666

37 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :703

38 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :741

39 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :780

40 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :820

41 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :861

42 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :903

43 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :946

44 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :990

45 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1035

46 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1081

47 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1128

48 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1176

49 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1225

50 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1275

51 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1326

52 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1378

53 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1431

54 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1485

118

A. Appendix

55 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1540

^C56 : 0 1 2 3[cuneia@neptune test]$./result 1

Sphere Recovery :: Detected Inconsistent Store

Sphere Recovery :: Redoing lost updates ...

Sphere Recovery :: Undoing loser histories ...

Sphere Recovery :: Store OK

... execution resumes at PC: 99

9 : The sum is now :861

42 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :903

43 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :946

44 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :990

45 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1035

46 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1081

47 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1128

48 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1176

49 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1225

50 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1275

51 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1326

52 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1378

53 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1431

54 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1485

55 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1540

56 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1596

57 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1653

58 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1711

59 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1770

60 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1830

61 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1891

^C62 : 0 1 2 3 4 5 6 7[cuneia@neptune test]$./result 1

Sphere Recovery :: Detected Inconsistent Store

Sphere Recovery :: Redoing lost updates ...

Sphere Recovery :: Undoing loser histories ...

Sphere Recovery :: Store OK

... execution resumes at PC: 99

9 : The sum is now :861

42 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :903

43 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :946

44 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :990

45 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1035

46 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1081

47 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1128

48 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1176

49 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1225

50 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1275

51 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1326

119

A. Appendix

52 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1378

53 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1431

54 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1485

55 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1540

56 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1596

57 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1653

58 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1711

59 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1770

60 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1830

61 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1891

62 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :1953

63 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2016

64 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2080

65 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2145

66 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2211

67 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2278

68 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2346

69 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2415

70 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2485

71 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2556

72 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2628

73 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2701

74 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2775

75 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2850

76 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2926

77 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3003

78 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3081

79 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3160

^C80 : 0 1 2 3 4 [cuneia@neptune test]$./result 1

Sphere Recovery :: Detected Inconsistent Store

Sphere Recovery :: Redoing lost updates ...

Sphere Recovery :: Undoing loser histories ...

Sphere Recovery :: Store OK

... execution resumes at PC: 269

8 9 : The sum is now :1953

63 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2016

64 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2080

65 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2145

66 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2211

67 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2278

68 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2346

69 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2415

70 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2485

71 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2556

72 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2628

120

A. Appendix

73 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2701

74 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2775

75 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2850

76 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :2926

77 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3003

78 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3081

79 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3160

80 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3240

81 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3321

82 : 0 1 2 3 4 5 6 7 8 9 : The sum is now :3403

^C83 : 0 1 2 3 [cuneia@neptune test]$

121

A. Appendix

A.2.11. Compiled Code

Sample program:

basic_system : uses system {

! mytest_class : super object {

! main()

{

total:=0;

for j:=0; j<100000; j:=j+1; {

j.print;

" : ".print;

for i:=0; i<10; i:=i+1; {

i.print; " ".print;

}

total:=total+j;

": The sum is now :".print;

total.println;

}

}

}

}

Resulting code:

//

// no return value

//

struct _f_main {

_d_long *tmp0;

_d_long *total_2;

_d_long *tmp1;

_d_long *j_2;

_d_long *tmp3;

_d_bool *tmp4;

_d_long *tmp5;

_d_text *tmp6;

_d_long *tmp7;

_d_long *i_3;

_d_long *tmp9;

_d_bool *tmp10;

_d_long *tmp11;

_d_text *tmp12;

122

A. Appendix

_d_text *tmp13;

};

_m_main:

{

_f_main *f;

allocFrame((sizeof(struct _f_main)/sizeof(ptr))-0);

//--

pc244: *pcPtr=244;

// tmp0:=0 // long

((_f_main*)topRf)->tmp0=new_long(0x00000000);

//--

pc245: *pcPtr=245;

// total_2:=tmp0 // long

((_f_main*)topRf)->total_2=(_d_long*)((_f_main*)topRf)->tmp0;

//--

pc246: *pcPtr=246;

// tmp1:=0 // long

((_f_main*)topRf)->tmp1=new_long(0x00000000);

//--

pc247: *pcPtr=247;

// j_2:=tmp1 // long

((_f_main*)topRf)->j_2=(_d_long*)((_f_main*)topRf)->tmp1;

// FOR LOOP :

toptmp2:

//--

pc248: *pcPtr=248;

// tmp3:=100000 // long

((_f_main*)topRf)->tmp3=new_long(0x000186a0);

//--

pc249: *pcPtr=249;

// tmp4:=H(j_2,tmp3) // bool

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("H",f->j_2,f->tmp3);

allocFrame(1);

pushArg((ptr)(f->tmp3));

pushArg((ptr)(f->j_2));

pushPC(250);

goto *theLabel;

pc250: *pcPtr=250;

ret=popArg();

((_f_main*)topRf)->tmp4=(_d_bool*)ret; // Return Value

// FOR tmp4

if (!get_bool(((_f_main*)topRf)->tmp4)) goto endtmp2;

goto fortmp2;

looptmp2:

//--

pc251: *pcPtr=251;

// tmp5:=1 // long

((_f_main*)topRf)->tmp5=new_long(0x00000001);

//--

pc252: *pcPtr=252;

123

A. Appendix

// j_2:=I(j_2,tmp5) // long

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("I",f->j_2,f->tmp5);

allocFrame(1);

pushArg((ptr)(f->tmp5));

pushArg((ptr)(f->j_2));

pushPC(253);

goto *theLabel;

pc253: *pcPtr=253;

ret=popArg();

((_f_main*)topRf)->j_2=(_d_long*)ret; // Return Value

goto toptmp2;

fortmp2:

//--

pc254: *pcPtr=254;

// print(j_2)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("print",f->j_2);

pushArg((ptr)(f->j_2));

pushPC(255);

goto *theLabel;

pc255: *pcPtr=255;

//--

pc256: *pcPtr=256;

// tmp6:=" : " // text

((_f_main*)topRf)->tmp6=new_text(" : ");

//--

pc257: *pcPtr=257;

// print(tmp6)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("print",f->tmp6);

pushArg((ptr)(f->tmp6));

pushPC(258);

goto *theLabel;

pc258: *pcPtr=258;

//--

pc259: *pcPtr=259;

// tmp7:=0 // long

((_f_main*)topRf)->tmp7=new_long(0x00000000);

//--

pc260: *pcPtr=260;

// i_3:=tmp7 // long

((_f_main*)topRf)->i_3=(_d_long*)((_f_main*)topRf)->tmp7;

// FOR LOOP :

toptmp8:

//--

pc261: *pcPtr=261;

// tmp9:=10 // long

((_f_main*)topRf)->tmp9=new_long(0x0000000a);

//--

pc262: *pcPtr=262;

// tmp10:=H(i_3,tmp9) // bool

124

A. Appendix

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("H",f->i_3,f->tmp9);

allocFrame(1);

pushArg((ptr)(f->tmp9));

pushArg((ptr)(f->i_3));

pushPC(263);

goto *theLabel;

pc263: *pcPtr=263;

ret=popArg();

((_f_main*)topRf)->tmp10=(_d_bool*)ret; // Return Value

// FOR tmp10

if (!get_bool(((_f_main*)topRf)->tmp10)) goto endtmp8;

goto fortmp8;

looptmp8:

//--

pc264: *pcPtr=264;

// tmp11:=1 // long

((_f_main*)topRf)->tmp11=new_long(0x00000001);

//--

pc265: *pcPtr=265;

// i_3:=I(i_3,tmp11) // long

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("I",f->i_3,f->tmp11);

allocFrame(1);

pushArg((ptr)(f->tmp11));

pushArg((ptr)(f->i_3));

pushPC(266);

goto *theLabel;

pc266: *pcPtr=266;

ret=popArg();

((_f_main*)topRf)->i_3=(_d_long*)ret; // Return Value

goto toptmp8;

fortmp8:

//--

pc267: *pcPtr=267;

// print(i_3)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("print",f->i_3);

pushArg((ptr)(f->i_3));

pushPC(268);

goto *theLabel;

pc268: *pcPtr=268;

//--

pc269: *pcPtr=269;

// tmp12:=" " // text

((_f_main*)topRf)->tmp12=new_text(" ");

//--

pc270: *pcPtr=270;

// print(tmp12)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("print",f->tmp12);

pushArg((ptr)(f->tmp12));

125

A. Appendix

pushPC(271);

goto *theLabel;

pc271: *pcPtr=271;

goto looptmp8;

// ENDFOR

endtmp8:

//--

pc272: *pcPtr=272;

// total_2:=I(total_2,j_2) // long

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("I",f->total_2,f->j_2);

allocFrame(1);

pushArg((ptr)(f->j_2));

pushArg((ptr)(f->total_2));

pushPC(273);

goto *theLabel;

pc273: *pcPtr=273;

ret=popArg();

((_f_main*)topRf)->total_2=(_d_long*)ret; // Return Value

//--

pc274: *pcPtr=274;

// tmp13:=": The sum is now :" //

text

((_f_main*)topRf)->tmp13=new_text(": The sum is now :");

//--

pc275: *pcPtr=275;

// print(tmp13)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("print",f->tmp13);

pushArg((ptr)(f->tmp13));

pushPC(276);

goto *theLabel;

pc276: *pcPtr=276;

//--

pc277: *pcPtr=277;

// println(total_2)

f=(_f_main*)topRf;

theLabel=dispatchMTCmessage("println",f->total_2);

pushArg((ptr)(f->total_2));

pushPC(278);

goto *theLabel;

pc278: *pcPtr=278;

goto looptmp2;

// ENDFOR

endtmp2:

//--

pc279: *pcPtr=279;

// nothing to return.

releaseFrame((uint32)(sizeof(struct _f_main)/sizeof(ptr)));

goto *jumpTable[popPC()];

}

126

A. Appendix

A.3. Language comparison

A.3.1. SideEffect in Smalltalk

"

""

"" Side effect in Smalltalk.

"" The procedure "dangerous" discovers that one of its

"" parameters changes unexpectedly.

""

"

Object subclass: #sideEffect

instanceVariableNames: ’n’

classVariableNames: ”

poolDictionaries: ”

category: nil !

!sideEffect class methodsFor: ”!

new: v

^((super new) init: v)

!!

!sideEffect methodsFor: ”!

init: v

n:=v

!

val

^n

!

dangerous: b

’b is ’ xprint.

(b val) printNl.

n:=n+20.

((b val) > 20) ifTrue: [

’Ehi! b has changed! Now it is: ’ xprint.

(b val) printNl

]

!!

"

"" A custom printing function

"

127

A. Appendix

!String methodsFor: ’customPrinting’!

xprint

self do: [:char | stdout nextPut: char]

!!

"

"" Verification of the side-effect!

"

|a|

a:=sideEffect new: 5.

a dangerous: a

!

Output:

Execution begins...

b is 5

Ehi! b has changed! Now it is: 25

2587 byte codes executed

128

A. Appendix

A.3.2. SideEffect in Java

/*

Side effect in Java.

The procedure "dangerous" discovers that one of its

parameters changes unexpectedly.

*/

class sideEffect

{

long n;

sideEffect(long v) { n=v; }

static void dangerous(sideEffect a,sideEffect b)

{

System.out.println("b is "+b.n);

a.n+=20;

if (b.n>10)

System.out.println("Ehi! b has changed! Now it is: "+b.n);

}

public static void main(String av[])

{

sideEffect a;

a=new sideEffect(5);

dangerous(a,a);

}

}

Output:

b is 5

Ehi! b has changed! Now it is: 25

129

A. Appendix

A.3.3. SideEffect in BOH

/*

Side effect in BOH.

The procedure "dangerous" discovers that one of its

parameters changes unexpectedly.

*/

side: uses system {

!sideEffect:super object

{

n:long;

!sideEffect(v:long): super object() { sideEffect.n:=v; }

!dangerous(a,b:sideEffect)

{

"b is ".print;

b.n.println;

a.n:=a.n+20;

if b.n>10 {

print("Ehi! b has changed! Now it is: ");

b.n.println;

}

}

}

!main()

{

a:=sideEffect(5);

dangerous(a,a);

}

}

Output:

... execution begins at PC: 0

b is 5

Ehi! b has changed! Now it is: 25

130

A. Appendix

A.3.4. Identifiers in BOH: extended character set

lexicon : uses system

{

! ~B%#@@$? ():long

{

~B%#@@$? := 15;

}

main()

{

println(~B%#@@$?());

}

}

Output:

... execution begins at PC: 0

15

131

A. Appendix

A.3.5. Overloading vs. generic functions: Java

class child extends parent {}

class parent

{

void direct(parent b) {

System.out.println(": Called parent - parent");

}

void direct(child b) {

System.out.println(": Called parent - child");

}

void indirect(parent b) {

direct(b);

}

public static void main(String av[])

{

parent p=new parent();

child c=new child();

System.out.print(p); System.out.print(p); p.direct(p);

System.out.print(p); System.out.print(c); p.direct(c);

System.out.print(p); System.out.print(c); p.indirect(c);

}

}

Output:

parent@80caf4a parent@80caf4a : Called parent - parent

parent@80caf4a child@80caf4c : Called parent - child

parent@80caf4a child@80caf4c: Called parent - parent

132

A. Appendix

A.3.6. Overloading vs. generic functions: BOH

GenericVsOverload: uses system

{

!parent: super object {!parent(): super object() {}}

!child: super parent {!child(): super parent() {}}

direct(a:parent,b:parent)

{ println(" : Called parent - parent"); }

direct(a:parent,b:child)

{ println(" : Called parent - child"); }

indirect(a:parent,b:parent)

{ direct(a,b); }

main()

{

p:=parent();

c:=child();

p.print; p.print; p.direct(p);

p.print; c.print; p.direct(c);

p.print; c.print; p.indirect(c);

}

}

Output:

... execution begins at PC: 0

<parent><parent> : Called parent - parent

<parent><child> : Called parent - child

<parent><child> : Called parent - child

133

A. Appendix

A.3.7. Methods with different return types in Java

class child extends parent

{

figlia msg() {

System.out.println(" Called method in child");

return (new child());

}

}

class parent

{

parent msg() {

System.out.println(" Called method in parent");

return (new parent());

}

public static void main(String av[])

{

parent p=new parent();

child f=new child();

parent k;

k=p.msg();

k=f.msg();

}

}

Compiler Output:

retVal.java:2: Method redefined with different return type: child msg() was parent

msg()

child msg() {

^

1 error

134

A. Appendix

A.3.8. Methods with different return types in BOH

retVal: uses system

{

!parent: super object {!parent(): super object() {}}

!child: super parent {!child(): super parent() {}}

msg(a:parent):parent {

println(" Called method in parent");

msg:=a;

}

msg(a:child):child {

println(" Called method in child");

msg:=a;

}

parent_or_child(a:parent) {

print (" Parent_or_child, applied to ");

println (a);

}

special_for_child(a:child) {

print (" Special_for_child, applied to ");

println (a);

}

main()

{

p:=parent();

f:=child();

p.print;

p.msg.parent_or_child; // static type of p.msg: parent

.nl;

f.print;

f.msg.special_for_child; // static type of f.msg: child

}

}

Output:

<parent> Called method in parent

Parent_or_child, applied to <parent>

135

A. Appendix

<child> Called method in child

Special_for_child, applied to <child>

136

A. Appendix

A.3.9. Ambiguity in C++

class ambig {};

class ambig2:ambig {};

void one(ambig a,ambig2 b) {}

void one(ambig2 a,ambig b) {}

main(){

ambig2 a=*(new ambig2);

one(a,a);

}

Compiler Output: (no suggestions, overloading)

ambig.cpp: In function ‘int main()’:

ambig.cpp:9: call of overloaded ‘one’ is ambiguous

ambig.cpp:4: candidates are: one(ambig, ambig2)

ambig.cpp:5: one(ambig2, ambig)

137

A. Appendix

A.3.10. Ambiguity in Java

class ambig {}

class ambig2 extends ambig {

static void one(ambig a,ambig2 b) {}

static void one(ambig2 a,ambig b) {}

static void main(){

ambig2 a=new ambig2();

one(a,a);

}

}

Compiler Output: (no suggestions, overloading)

ambig.java:9: Reference to one is ambiguous. It is defined in

void one(ambig2, ambig) and void one(ambig, ambig2).

one(a,a);

^

1 error

138

A. Appendix

A.3.11. Ambiguity in BOH

ambigPack: uses system {

!ambig: super object {!ambig(): super object(){}}

!ambig2: super ambig {!ambig2(): super ambig(){}}

one(a:ambig,b:ambig2) {}

one(a:ambig2,b:ambig) {}

main(){

a:=ambig2();

one(a,a);

}

}

Compiler Output: (solution proposed, multiple dispatching)

...

Phase4:

processing...

Uhm.. missing definition: one(ambig2,ambig2)..

There were errors during the verification of messages.

Error during compilation.

Bailing out.

139

Bibliography

[ABC
�

83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, and R. Morri-

son. An approach to persistent programming. Computer Journal, 26(4):360–

365, 1983, http://www-ppg.dcs.st-and.ac.uk/Publications/1983.

html#approach.persist%ence.

[ADJ
�

96] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An

orthogonally persistent Java. ACM SIGMOD Record, 25(4):68–75, December

1996.

[ADL91] Rakesh Agrawal, Lindga G. DeMichiel, and Bruce G. Lindsay. Static

type checking of multi-methods. ACM SIGPLAN Notices, 26(11):113–128,

November 1991. OOPSLA ’91 Conference Proceedings, Andreas Paepcke

(editor), October 1991, Phoenix, Arizona.

[AH98] Alan Au and Gernot Heiser. L4 user manual. Technical Report UNSW-

CSE-TR-9801, School of Computer Science and Engineering, University

of New South Wales, Australia, 1998, ftp://ftp.cse.unsw.edu.au/pub/

doc/papers/UNSW/9801.ps.Z.

[AJ99] M. Atkinson and M. Jordan. Issues raised by three years of developing PJama:

An orthogonally persistent, platform for Java[TM]. Lecture Notes in Computer

Science, 1540:1–30, 1999.

[AM95] M. P. Atkinson and R. Morrison. Orthogonally persistent object systems.

VLDB Journal, 4(3):319–401, 1995, http://www-ppg.dcs.st-and.ac.uk/

Publications/1995.html.

[AMB95] M. Atkinson, D. Maier, and V. Benzaken, editors. Persistent Object Systems,

Berlin, 1995.

[Ano94] Anonymous. Inheritance or delegation? Byte Magazine, 19(5):60, May 1994.

140

Bibliography

[App95] Apple Computer. Dylan Reference Manual, October 1995. (Draft).

[App96] Apple Computer. Newton Programmer’s Guide (For Newton 2.0). Addison-

Wesley, 1996.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[Bal95] Stoney Ballard. Dylan Competitive Analysis. Apple Computer, February 1995.

[Bea94] Michel Beaudouin. Object-Oriented Languages : Basic Principles and

Programming Techniques. Chapman & Hall, 1994.

[BFH
�

92] Allen C. Bomberger, William S. Frantz, Ann C. Hardy, Norman Hardy,

Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS(R) nanokernel ar-

chitecture. In USENIX Association, editor, Proceedings of the USENIX Work-

shop on Micro-Kernels and Other Kernel Architectures: 27–28 April, 1992,

Seattle, WA, USA, pages 95–112, Berkeley, CA, USA, April 1992. USENIX.

[BLNR96] Eva Z. Bem, Anders Linström, Stephen Norris, and John Rosenberg. Hop-

pix - an implementation of a unix server on a persistent operating system.

In Luis-Felipe Cabrera and Nayeem Islam, editors, Proceedings of 5th Inter-

national Workshop on Object-Orientation in Operating Systems (IWOOOS),

pages 112–116, Washington, DC, 1996. IEEE Computer Society.

[BM97] François Bourdoncle and Stephan Merz. Type checking higher-order

polymorphic multi-methods. In ACM, editor, Conference record of

POPL ’97, the 24th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages: papers presented at the symposium, Paris,

France, 15–17 January 1997, pages 302–315, New York, NY, USA, 1997.

ACM Press, http://www.acm.org:80/pubs/citations/proceedings/

plan/263699/p302-bourd%oncle/.

[BMP92] Doug Bell, Ian Morrey, and John Pugh. Software Engineering, a programming

approach. Prentice-Hall, 2nd edition, 1992.

[Boe93] Hans-Juergen Boehm. Space efficient conservative garbage collection. In

Proceedings of SIGPLAN’93 Conference on Programming Languages Design

and Implementation, volume 28(6) of ACM SIGPLAN Notices, pages 197–

206, Albuquerque, NM, June 1993. ACM Press, http://www.hpl.hp.com/

personal/Hans_Boehm/gc/index.html.

141

Bibliography

[BOL95] Gruruduth Banavar, Douglas Orr, and Gary Lindstrom. Layered, server-based

support for object-oriented application development. Technical Report UUCS-

95-007, University of Utah, Department of Computer Science, April 1995.

[Boo91] Grady Booch. Object Oriented Design with Applications. The Ben-

jamin/Cummings Publishing Company, 1991.

[BP94] Andrew Black and Jens Palsberg. Foundations of object-oriented languages:

Workshop report. ACM SIGPLAN Notices, 29(3):3–11, March 1994, ftp:

//crl.dec.com/pub/DEC/sigplan94.ps.Z. The bibliography was trun-

cated in the published version. obtain the full report by anonymous ftp from

crl.dec.com in pub/DEC/sigplan94.ps.Z.

[CC99] Craig Chambers and Weimin Chen. Efficient multiple and predicate dispatch-

ing. In Loren Meissner, editor, Proceeings of the 1999 ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages & Applica-

tions (OOPSLA‘99), volume 34.10 of ACM Sigplan Notices, pages 238–255,

N. Y., 1999. ACM Press, http://www.cs.washington.edu/research/

projects/cecil/www/Papers/dispatc%hing.html.

[Cha] Jane Chandler. Introduction to Object-Oriented Programming Languages.

Department of Information Systems, University of Portsmouth, http://

www.sis.port.ac.uk/~chandler/OOLectures/oopl/oopl.htm. (based

on [Bea94]).

[Cha92] Craig Chambers. Object-oriented multi-methods in cecil. In Ole Lehrmann

Madsen, editor, Proceedings of the 6th European Conference on Object-

Oriented Programming (ECOOP), volume 615 of Lecture Notes in Com-

puter Science, pages 33–56, Berlin, Heidelberg, New York, Tokyo, June 1992.

Springer-Verlag.

[Cha93] Craig Chambers. The Cecil language. Technical Report 93-03-05, March

1993.

[CIL93] Jeffrey S. Chase, Valérie Issarny, and Henry M. Levy. Distribution in a single

address space operating system. ACM Operating Systems Review, 27(2):61–

65, April 1993.

[CIM92] Roy H. Campbell, Nayeem Islam, and Peter Madany. Choices, frameworks

and refinement. In USENIX Association, editor, Computing Systems, Sum-

142

Bibliography

mer, 1992., volume 5, pages 217–257, Berkeley, CA, USA, Summer 1992.

USENIX.

[CIRM93] R. H. Campbell, N. Islam, D. Raila, and P. Madany. Designing and implement-

ing choices: An object-oriented system in C++. Communications of the ACM

(special issue, Concurrent Object-Oriented Programming, B. Meyer, editor),

36(9):117–126, 1993.

[CL95] Craig Chambers and Gary T. Leavens. Typechecking and modules for mul-

timethods. ACM Transactions on Programming Languages and Systems,

17(6):805–843, November 1995.

[CL96] Craig Chambers and Gary T. Leavens. BeCecil, A core object-oriented lan-

guage with block structure and multimethods: Semantics and typing. In

The Fourth International Workshop on Foundations of Object-Oriented Lan-

guages, FOOL 4, Paris, France, December 1996, http://www.cs.indiana.

edu/hyplan/pierce/fool/chambers.ps.gz. The proceedings are on-line

at the URL http://www.cs.williams.edu/~kim/FOOL/FOOL4.html.

[CLBHL93] Jeff Chase, Hank Levy, Miche Baker-Harvey, and Ed Lazowska. Opal: A

single address space system for 64-bit architectures. In Proceedings of the

Fourth Workshop on Workstation Operating Systems, pages 80–85, 1993.

[Clo] The Common Lisp Object System, http://iahost.dis.ulpgc.es/clos.

html. (based on [Gra96]).

[CM81] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, Berlin,

1981.

[CM91] Antonio Cunei and Marino Miculan. OOPLog, progetto per l’Esame di Lin-

guaggi di Programmazione (Prof. Carlo Tasso). Università degli Studi di

Udine, 1991.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstrac-

tion, and polymorphism. ACMCS, 17(4):471–522, December 1985,

http://www.research.digital.com/SRC/personal/Luca_Cardelli/

Papers/OnUnd%erstanding.A4.ps. Model of typed, polymorphic program-

ming languages. Existential and bounded quantification. Lambda calculus

based model of type systems. The language Fun. 44 references.

143

Bibliography

[dAJK] Jecel Mattos de Assumpcao Jr and Sergio Takeo Kufuji. Bootstrapping the

Object Oriented Operating System Merlin: Just Add Reflection, http://www.

lsi.usp.br/~jecel/jpaper7.ps.gz.

[Dal97] Jeff Dalton. Brief Guide to CLOS. University of Edinburgh, August

1997, http://www.tnt.uni-hannover.de/data/www/soft/case/lang/

lisp/clos.html.

[DAS98] Eric Dujardin, Eric Amiel, and Eric Simon. Fast algorithms for com-

pressed multimethod dispatch table generation. ACM Transactions

on Programming Languages and Systems, 20(1):116–165, January

1998, http://www.acm.org:80/pubs/citations/journals/toplas/

1998-20-1/p116-duj%ardin/.

[dBDF
�

94] Rex di Bona, Alan Dearle, James Farrow, Frans Henskens, Anders Lind-

strom, John Rosenberg, and Francis Vaughan. Generic interface for config-

urable disk i/o systems. In Gopal Gupta, editor, Proceedings of the Seven-

teenth Annual Computer Science Conference, ACSC-17, Part B, pages 355–

362, Christchurch, New Zealand, January 1994. http://docs.dcs.napier.

ac.uk/DOCS/GET/bona94a/document.html.

[DdBF
�

94a] Alan Dearle, Rex di Bona, James Farrow, Frans Kenskens, Anders Lind-

ström, John Rosenberg, and Francis Vaughan. Grasshopper: An orthog-

onally persistent operating system. Computing Systems, 7(3):289–312,

Summer 1994, http://docs.dcs.napier.ac.uk/DOCS/GET/dearle92b/

document.ps.gz.

[DdBF
�

94b] Alan Dearle, Rex di Bona, James Farrow, Frans Kenskens, Anders Lindström,

John Rosenberg, and Francis Vaughan. Grasshopper: An orthogonally persis-

tent operating system. Computing Systems, 7(3):289–312, Summer 1994.

[DdBF
�

96] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, David Hulse,

Anders Lindstrom, Stephen Norris, John Rosenberg, and Francis Vaughan.

Protection in the Grasshopper operating system. In Proceedings of

the 6th International Workshop on Persistent Object Systems, Tarascon,

France, September 1996. http://docs.dcs.napier.ac.uk/DOCS/GET/

dearle94a/document.html.

[DdBL
�

94] Alan Dearle, Rex di Bona, Anders Lindstrom, John Rosenberg, and Francis

Vaughan. User-level management of persistent data in the Grasshopper op-

144

Bibliography

erating system. Technical Report GH-08, University of Sydney, Computer

Science, N.S.W 2006, Australia, 1994, http://docs.dcs.napier.ac.uk/

DOCS/GET/dearle94b/document.html.

[Deb95] Clive Debenham. An Introduction To TAOS. Tantric Technologies, March

1995, tantric@cix.compulink.co.uk.

[DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers. Sub-

types vs. where clauses: Constraining parametric polymorphism. In OOP-

SLA ’95 Conference Proceedings: Object-Oriented Programming Systems,

Languages, and Applications, pages 156–168. ACM Press, 1995, ftp://ftp.

pmg.lcs.mit.edu/pub/thor/where-clauses.ps.gz.

[DH95] A. Dearle and D. Hulse. On page-based optimistic process checkpointing. In

Proc. of the Fourth Int’l Workshop on Object Orientation in Operating Systems

(IWOOOS’95), pages 24–32, August 1995.

[DRH
�

92] Alan Dearle, John Rosenberg, Frans Henskens, Francis Vaughan, and Kevin

Maciunas. An examination of operating system support for persistent ob-

ject systems. In Proceedings of the Twenty-Fifth Annual Hawaii International

Conference on System Sciences, pages 779–789, 1992, http://docs.dcs.

napier.ac.uk/DOCS/GET/dearle92a/document.ps.gz.

[DV66] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-

grammed computations. Communications of the ACM, 9(3):143–155, March

1966. Originally presented at the Proceedings of the ACM Programming Lan-

guage and Pragmatics Conference, August 8–12, 1965.

[Eck] Bruce Eckel. Thinking in C++, 2.0 edition, http://www.bruceeckel.com/.

(to be published by Prentice-Hall; downloadable in RTF format).

[Edi86] Edia Borland s.r.l., V. Cirene, 11 - 20135 Milano. Turbo Pascal - Versione 3.0,

December 1986.

[EK95] Dawson R. Engler and M. Frans Kaashoek. Exterminate all operating sys-

tem abstractions. In Proceedings of the 5th Workshop on Hot Topics in Op-

erating Systems (HotOS-V), pages 78–83, Orcas Island, Washington, May

1995. IEEE Computer Society, http://www.pdos.lcs.mit.edu/papers/

hotos-jeremiad.ps.

145

Bibliography

[EKC98] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate dispatch-

ing: A unified theory of dispatch. In Eric Jul, editor, ECOOP ’98–object-

oriented programming, volume 1445 of Lecture Notes in Computer Science,

pages 186–211. Springer, July 1998, http://www.cs.washington.edu/

research/projects/cecil/www/Papers/gud.htm%l.

[EKJ95] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole Jr. Exokernel:

an operating system architecture for application-level resource management.

In Proceedings of the 15th ACM Symposium on Operating Systems Princi-

ples (SOSP), volume 29, 1995, http://www.pdos.lcs.mit.edu/papers/

exokernel-sosp95.ps.

[EKO94] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole Jr. The

exokernel approach to extensibility (panel statement). In Proceedings of

the 1st USENIX Symposium on Operating System Design and Implementa-

tion (OSDI ’94), page 198, Monterey, California, November 1994. http:

//www.pdos.lcs.mit.edu/papers/exo-abstract.ps.

[Elp99] Kevin John Elphinstone. Virtual memory in a 64-bit microkernel. PhD thesis,

University of New South Wales, August 1999, ftp://ftp.cse.unsw.edu.

au/pub/users/disy/papers/Elphinstone:phd.ps.gz.

[Fla97] D. Flanagan. Java In A Nutshell. A Nutshell Handbook. O’Reilly, 2nd edition,

1997.

[FSB
�

98] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Joâo Gar-

cia, Sytse Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly,

George Coulouris, Jean Dollimore, Paulo Guedes, Daniel Hagimont, and

Sacha Krakowiak. PerDiS: design, implementation, and use of a PERsistent

DIstributed Store. Technical Report QMW TR 752, CSTB ILC/98-1392, IN-

RIA RR 3525, INESC RT/5/98, QMW, CSTB, INRIA and INESC, October

1998, http://www-sor.inria.fr/publi/PDIUPDS_rr3525.html.

[Geh84] Narain Gehani. Ada, an advanced introduction (including reference manual

for the Ada programming language. Prentice-Hall software series. Prentice-

Hall, Englewood Cliffs, New Jersey, 1984.

[GFM
�

91] Carlo Ghezzi, Alfonso Fuggetta, Sandro Morasca, Angelo Morzenti, and

Mauro Pezzi. Ingegneria del software: progettazione, sviluppo e verifica.

Mondadori informatica, Milano, 1991.

146

Bibliography

[GM96] A. Gawecki and F. Matthes. Integrating subtyping, matching and type quan-

tification: A practical perspective. In Pierre Cointe, editor, Proceedings of the

10th European Conference on Object-Oriented Programming, ECOOP’96,

volume 1098, pages 26–47, Linz, Austria, July 1996. Springer-Verlag, http:

//www.sts.tu-harburg.de/papers/1996/GaMa96b.

[Gol84] Adele Goldberg. Smalltalk-80: the interactive programming environment.

Addison-Wesley computer science. Addison-Wesley, Reading (Mass.), 1984.

[Gra96] Paul Graham. ANSI Common Lisp. Prentice Hall series in artificial intelli-

gence. Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1996.

[Gro92] Peter Grognono. Programmare in Pascal e Turbo Pascal. Franco Muzzio

Editore, 1992.

[HB87] D. M. Harland and B. Beloff. OBJEKT: A persistent object store with an

integrated garbage collector. sigplan, 22(4):70–79, April 1987, http://www.

saqnet.co.uk/users/beloff/computing/sigplan.html.

[HD96] David Hulse and Alan Dearle. A log-structured persistent store. In Pro-

ceedings of the 19th Australasian Computer Science Conference, 1996, http:

//docs.dcs.napier.ac.uk/DOCS/GET/hulse96a/document.html.

[HKR90] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers. IEEE

Trans. Softw. Eng., SE-16(12):1344–1351, October 1990.

[HKR92] J. Heering, P. Klint, and J. Rekers. Incremental generation of lexical scanners.

ACM Transactions on Programming Languages and Systems, 14(4):490–520,

October 1992.

[HLR98] Gernot Heiser, Fondy Lam, and Stephen Russell. Resource manage-

ment in the mungi single-address-space operating system. In Proceedings

of the 21 st Australasian Computer Science Conference, Perth, Australia,

February 1998. ftp://ftp.cse.unsw.edu.au/pub/users/disy/papers/

Heiser_LR_98.ps.gz.

[HRB
�

87] Norman C. Hutchinson, Rajendra K. Raj, Andrew P. Black, Henry M. Levy,

and Eric Jul. The emerald programing lanuage report. Technical Report 87-

10-07, Department of Computer Science, University of Washington, Seattle,

October 1987.

147

Bibliography

[Hul96] David Hulse. A flexible persistent architecture permitting trade-off between

snapshot and recovery times. Technical Report GH-16, University of Syd-

ney, Computer Science, N.S.W 2006, Australia, 1996, http://docs.dcs.

napier.ac.uk/DOCS/GET/hulse96b/document.html.

[Hut87] Norman C. Hutchinson. Emerald: An Object-Based Language for Distributed

Programming. PhD thesis, University of Washington, Computer Science De-

partment, January 1987.

[HVER97] Gernot Heiser, Jerry Vochteloo, Kevin Elphinstone, and Stephen Russell. The

mungi kernel api, release 1.0. Technical Report UNSW-CSE-TR-9701, Uni-

versity of New South Wales, Department of Computer Systems, April 1997,

ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/9701.ps.Z.

[IBM] IBM Corporation, Object Technology Products Group, Austin, Texas. The

System Object Model (SOM) and the Component Object Model (COM): A

comparison of technologies from a developer’s perspective.

[Ins] Institut für Computersysteme - ETH Zürich. The Official Oberon Home Page,

http://www.oberon.ethz.ch.

[IT94] Jun-Ichiro Itoh and Mario Tokoro. Object-oriented device driver program-

ming. In WOOC94, session 9-2, Biwa lake, Shiga, March 1994. ftp:

//ftp.itojun.org/pub/paper/itojun-wooc94-handout.ps.Z.

[Jon] Richard Jones. The Garbage Collection Page, http://stork.ukc.ac.uk/

computer_science/Html/Jones/gc.html.

[JRH88] Eric Jul, Rajendra K. Raj, and Norman C. Hutchinson. The emerald system

user’s guide. Technical Report Ver. 1.3, Department of Computer Science,

University of Washington, Seattle, November 1988.

[Jul88] Eric Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis,

University of Washington, Computer Science Department, December 1988.

[KCC
�

97] G.N.C. Kirby, R.C.H. Connor, Q.I. Cutts, R. Morrison, D.S. Munro, and

S. Scheuerl. Flask: An architecture supporting concurrent distributed per-

sistent applications. Technical Report CS/97/4, University of St Andrews,

Scotland, 1997.

148

Bibliography

[KEG
�

97] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor Briceño,

Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm, John Jan-

notti, and Kenneth Mackenzie. Application performance and flexibility on

exokernel systems. In Proceedings of the 16th Symposium on Operating Sys-

tems Principles (SOSP-97), volume 31,5 of Operating Systems Review, pages

52–65, New York, October 5–8 1997. ACM Press, http://www.pdos.lcs.

mit.edu/papers/exo-sosp97/exo-sosp97.ps.

[KM] G.N.C. Kirby and R. Morrison. A Persistent View of Encapsulation. St An-

drews, Fife KY16 9SS, Scotland.

[KM97] G.N.C. Kirby and R. Morrison. Orthogonal persistence as an implementation

platform for software development environments. Technical Report CS/97/6,

University of St Andrews, Scotland, 1997.

[KR89] Brian W. Kernigan and Dennis M. Ritchie. Il Linguaggio C. Jackson, 1989.

[Kur96] Kurt Nørmark. Hooks and Open Points, 1996, http://www.cs.auc.dk/

~normark/hooks/hypertext/hooks.html.

[Lan92] Charles R. Landau. The checkpoint mechanism in keykos. In Proceed-

ings of the Second International Workshop on Object Orientation in Oper-

ating Systems, pages 86–91. IEEE Computer Society, September 1992, http:

//docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95a/document.html.

[LDdB
�

94] Anders Lindstrom, Alan Dearle, Rex di Bona, J. Matthew Farrow, Frans

Henskens, John Rosenberg, and Francis Vaughan. A model for user-level

memory management in a persistent distributed environment. In Gopal Gupta,

editor, Proceedings of the Seventeenth Annual Computer Science Confer-

ence, ACSC-17, Part B, pages 343–354, Christchurch, New Zealand, Jan-

uary 1994. http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom94a/

document.html.

[LDdB
�

95] Anders Lindstrom, Alan Dearle, Rex di Bona, Stephen Norris, John Rosen-

berg, and Francis Vaughan. Persistence in the Grasshopper kernel. In Ra-

mamohanarao Kotagiri, editor, Proceedings of the Eighteenth Australasian

Computer Science Conference, ACSC-18, pages 329–338, Glenelg, South

Australia, February 1995. IEEE Computer Society, http://docs.dcs.

napier.ac.uk/DOCS/GET/lindstrom95a/document.html.

149

Bibliography

[Leo99] Yuri Leontiev. Type System for an Object-Oriented Database Programming

Language. PhD thesis, Dept. of Computing Science, University of Alberta,

Edmonton, Alberta, Canada, October 1999, ftp://ftp.cs.ualberta.ca/

pub/TechReports/1999/TR99-02/.

[LRD95] Anders Lindstrom, John Rosenberg, and Alan Dearle. The grand unified the-

ory of address spaces. In Proceedings of the Fifth Workshop on Hot Topics

in Operating Systems (HotOS-V), pages 66–71, Orcas Island, Washington,

May 1995. http://docs.dcs.napier.ac.uk/DOCS/GET/lindstrom95b/

document.html.

[Mar93] Dave Mark. Learn C++ on the Macintosh. Addison-Wesley, 1993.

[Mau96] Rainer Mauth. A better foundation: Development frameworks let you build

an application with reusable objects. Byte Magazine, 21(9), September 1996.

(International Features Section).

[MBCD89] R. Morrison, A. L. Brown, R. C. H. Connor, and A. Dearle. The napier88 ref-

erence manual. Technical Report PPRR-77-89, Universities of Glasgow and

St Andrews, 1989, http://www-ppg.dcs.st-and.ac.uk/Publications/

1989.html#napier.reference%.manual.

[MC99] Todd Millstein and Craig Chambers. Modular statically typed multimethods.

In R. Guerraoui, editor, Proceedings ECOOP’99, LCNS 1628, pages 279–

303, Lisbon, Portugal, June 1999. Springer-Verlag.

[McA95] Jeff McAffer. Meta-level architecture support for distributed objects. In Pro-

ceedings of the International Workshop on Object Orientation in Operating

Systems, pages 232–241, Lund, Sweden, November 1995. IEEE Computer

Society Press.

[Met] Metrowerks Inc. CodeWarrior Pascal: Language Reference, http://www.

jstream.com/java11jpds/pascal/pascalbook.html.

[MHH91] Warwick B. Mugridge, John Hamer, and John G. Hosking. Multi-methods

in a statically-typed programming language. In Pierre America, editor,

ECOOP ’91: European Conference on Object-Oriented Programming, vol-

ume 512 of Lecture Notes in Computer Science, pages 307–324. Springer-

Verlag, 1991.

150

Bibliography

[MHL
�

92] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

ARIES: A transaction recovery method supporting fine-granularity locking

and partial rollbacks using write-ahead logging. ACM Transactions on Data-

base Systems, 17(1):94–162, March 1992.

[MIT] MIT. Exokernel Operating System, http://www.pdos.lcs.mit.edu/exo.

html.

[MMPN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard.

Object-Oriented Programming in the BETA Programming Language.

Addison-Wesley, Reading, 1993.

[Mod] Modula-3 Home Page, http://www.research.digital.com/SRC/

modula-3/html/home.html.

[Mot92] Motorola Inc. M68000 Family Programmer’s Reference Manual, 1992. (Ref:

M68000PM/AD).

[Mot93] Motorola Inc. PowerPCTM 601 RISC Microprocessor User’s Manual, 1993.

(Ref: MPC601UM/AD).

[Mot94] Motorola Inc. DSP96002 32-bit Digital Signal Processor User’s Manual,

1994. (Ref: DSP96002UM/AD).

[MS97] Leonid Mikhajlov and Emil Sekerinski. The fragile base class problem and its

solution. Technical Report TUCS Technical Report No 117, Turku Centre for

Computer Science, June 1997.

[New] NewMonics Inc. Discussions on Real-time Garbage Collection, http://www.

newmonics.com/webroot/technologies/gc/.

[Obea] Oberon V3 Pages, http://caesar.ics.uci.edu/oberon.

[Obeb] Oberon V4 Pages, http://www.ssw.uni-linz.ac.at/Oberon.html.

[Obec] Oberon microsystems. Component Software: A Case Study Using BlackBox

Components. Preliminary version.

[Orn96] David Ornstein. Garbage Collection in Smalltalk/V, June 1996, http://www.

parcplace.com/support/vsesupp/TIPS/note2481.htm.

[OW99] Scott Oaks and Henry Wong. Java Threads. O’Reilly & Associates, Inc., 981

Chestnut Street, Newton, MA 02164, USA, second edition, 1999.

151

Bibliography

[PAD98] T. Printezis, M. P. Atkinson, and L. Daynès. The implementation of Sphere:

a Scalable, Flexible, and Extensible Persistent Object Store. Technical Report

TR-1998-46, Department of Computing Science, University of Glasgow, May

1998.

[PC93] Jill Nicola Peter Coad. Object-oriented programming. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1993.

[Pes95a] Carlo Pescio. C++, Manuale di Stile. Infomedia, Pisa, 1995.

[Pes95b] Carlo Pescio. Il problema della “fragile base class” in c++. Computer

Programming, 41, September 1995.

[PHLS99] Candy Pang, Wade Holst, Yuri Leontiev, and Duane Szaforon. Multi-

method dispatch using multiple row displacement. In Rachid Guerraoui,

editor, ECOOP ’99 — Object-Oriented Programming 13th European Con-

ference, Lisbon Portugal, volume 1628 of Lecture Notes in Computer Sci-

ence, pages 304–328. Springer-Verlag, New York, NY, June 1999, http:

//web.cs.ualberta.ca/~yuri/ecoop99/body.ps.

[Pri00] T. Printezis. Management of Long-Running High-Performance Persistent Ob-

ject Stores. PhD thesis, Department of Computing Science, University of Glas-

gow, Scotland, May 2000.

[Proa] IC Prolog][, online manual, http://laotzu.doc.ic.ac.uk/Localinfo/

icprolog.html.

[Prob] SICStus Prolog User’s Manual, http://www.sics.se/isl/sicstus.

[PS94] Dick Pountain and Clemens Szyperski. Extensible software systems: New

programming tools are needed to develop software systems tha can be easily

extended with new modules. Byte Magazine, 19(5):57, May 1994.

[PvE96] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean, Language Re-

port (Version 1.1), March 1996.

[Pyl81] I.C. Pyle. The ADA programming language: a guide for programmers.

Prentice-Hall International, Englewood Cliffs, New Jersey, 1981.

[R31] Introduction to KeyKOS Concepts - Online documentation, http://www.

cis.upenn.edu/~KeyKOS/agorics/KeyKos/Concepts/welcome.html.

152

Bibliography

[R32] A Programmer’s Introduction to EROS - Online documentation, http://www.

eros-os.org/devel/intro/ProgrmrIntro.html.

[R34] The TUNES Project - Home Page, http://www.tunes.org.

[RDH
�

96] John Rosenberg, Alan Dearle, David Hulse, Anders Lindström, and Stephen

Norris. Operating system support for persistent and recoverable computations.

Communications of the ACM, 39(9):62–69, September 1996, http://www.

acm.org/pubs/toc/Abstracts/cacm/234472.html.

[RTL
�

] Rajindra K. Raj, Evan Tampero, Henry M. Levy, Andrew P. Black, Norman C.

Hutchinson, and Eric Jul. Emerald: A General-Purpose Programming Lan-

guage. Seattle.

[SB86] M. Stefik and D. Bobrow. Object oriented programming: Themes and varia-

tions. AI Magazine, 6(4), 1986.

[Sch96] Herbert Schildt. Guida al Linguaggio C++. McGraw-Hill, 1996.

[SFS96] Jonathan S. Shapiro, David J. Farber, and Jonathan M. Smith. State caching

in the EROS kernel. In Proceedings of the 7th International Workshop on Per-

sistent Object Systems, Cape May, N.J., 1996. http://www.eros-os.org/

papers/pos96.ps.

[Sha97] Andrew Shalit. The Dylan Reference Manual: The Definitive Guide to the

New Object-Oriented Dynamic Language. Addison-Wesley, Reading, Mass.,

1997.

[SKW92] K. Singhal, S. Kakkad, and P. Wilson. Texas: An efficient, portable persis-

tent store. In Proc. Fifth International Workshop on Persistent Object Sys-

tems, pages 13–28, San Miniato Pisa (Italy), September 1992. ftp://ftp.

cs.utexas.edu/pub/garbage/texaspstore.ps.

[SM98a] Alan Skousen and Donald Miller. Operating system structure and proces-

sor architecture for a large distributed single address space. In 10th IASTED

Parallel and Distributed Computing Conference (PDCS98), pages 631–634,

October 1998, ftp://ftp.eas.asu.edu/pub/cse/sasos/pdcs98.pdf.

[SM98b] Alan Skousen and Donald Miller. The sombrero distributed single address

space operating system project. In Proceedings of the 2nd USENIX Windows

NT Symposium, page 168, Berkeley, August 1998. USENIX Association, ftp:

//ftp.eas.asu.edu/pub/cse/sasos/usenix_nt.pdf.

153

Bibliography

[SM99a] Alan Skousen and Donald Miller. Using a distributed single address space

operating system to support modern cluster computing. In Proceedings of the

32nd Hawaii Interntional Conference on System Sciences (HICSS-32), Jan-

uary 1999, ftp://ftp.eas.asu.edu/pub/cse/sasos/hicss-32.pdf.

[SM99b] Alan Skousen and Donald Miller. Using a single address space operating sys-

tem for distributed computing and high performance. In 18th IEEE Interna-

tional Performance, Computing, and Communications Conference, pages 8–

14, February 1999, ftp://ftp.eas.asu.edu/pub/cse/sasos/ipccc99.

pdf.

[SMR89] A. Straw, F. Mellender, and S. Riegel. Object management in a persistent

smalltalk system. Software–Practice and Experience, 19(8):719–737, August

1989.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:

A fast capability system. In 17th ACM Symposium on Operating Sys-

tems Principles (SOSP ’99), 1999, http://www.eros-os.org/papers/

sosp99-eros-preprint.ps.

[Str94] Bjarne Stroustrup. The design and evolution of C++. Addison-Wesley, Read-

ing, 1994.

[Sun] Sun Microsystem. Java OS, http://java.sun.com/products/javaos/.

[Sun95] Sun Microsystems. The Java Virtual Machine Specification, 1.0 beta edition,

August 1995, http://java.sun.com/doc/vmspec/VMSpec.ps.

[SW] Jonathan Shapiro and Sam Weber. A family of securable protection systems -

draft, http://www.cis.upenn.edu/~shap/EROS/MS-CIS-98-18.ps.gz.

[TRC95] See-Mong Tan, David K. Raila, and Roy H. Campbell. An object-oriented

nano-kernel for operating system hardware support. In Proceedings of

4th International Workshop on Object-Orientation in Operating Systems

(IWOOOS), Lund, Sweden, August 1995. IEEE Computer Society.

[Unia] University of California at Riverside. Home Page for DYLAN Language,

http://cuda.ucr.edu/Page_lang/inet_links/dylan.html.

[Unib] University of Oviedo, Spain. Oviedo 3 - An Object Oriented Inte-

gral System, Home Page, http://www.uniovi.es/~oviedo3/principal/

e-frames.htm.

154

Bibliography

[Val] Andrew Valencia. A Tutorial for GNU Smalltalk. Valencia Consulting, http:

//www.smalltalk.org/versions/GNUSmalltalk.html. (online documen-

tation of GNU Smalltalk 1.1.5).

[VD92] Francis Vaughan and Alan Dearle. Supporting large persistent stores using

conventional hardware. In Fifth International Workshop on Persistent Object

Systems, San Miniato, Italy, September 1992. Springer-Verlag, http://docs.

dcs.napier.ac.uk/DOCS/GET/vaughan92a/document.ps.gz. available

online only, in ftp.gh.cs.su.oz.au as GH-02.

[VDC
�

94] Francis Vaughan, Alan Dearle, Jiannong Cao, Rex di Bona, Matthew Farrow,

Frans Henskens, Anders Lindstrom, and John Rosenberg. Causality consid-

erations in distributed persistent operating systems. In Gopal Gupta, editor,

Proceedings of the Seventeenth Annual Computer Science Conference, ACSC-

17, Part B, pages 409–420, Christchurch, New Zealand, January 1994. http:

//docs.dcs.napier.ac.uk/DOCS/GET/vaughan94a/document.html.

[Voc98] Jerry Vochteloo. Design, implementation and performance of protection in

the Mungi single-address-space operating system. PhD thesis, University of

New South Wales, 1998, ftp://ftp.cse.unsw.edu.au/pub/users/disy/

papers/Vochteloo:phd.ps.gz.

[VRH93] Jerry Vochteloo, Stephen Russell, and Gernot Heiser. Capability-based pro-

tection in the mungi operating system. In Proceedings of the 3rd Interna-

tional Workshop on Object Orientation in Operating Systems, pages 108–115,

Asheville, NC, USA, December 1993. IEEE Computer Society, ftp://ftp.

cse.unsw.edu.au/pub/users/disy/papers/Vochteloo_RH_93.ps.gz.

[Way94] Peter Wayner. Objects on the march: The trend is toward an object-oriented

approach to the design of operating systems. Byte Magazine, 19(1):139, Jan-

uary 1994.

[WG98] Tim A. Wagner and Susan L. Graham. Efficient and flexible incremen-

tal parsing. ACM Transactions on Programming Languages and Sys-

tems, 20(5):980–1013, September 1998, http://www.acm.org:80/pubs/

citations/journals/toplas/1998-20-5/p980-wag%ner/.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves

Bekkers and Jacques Cohen, editors, Proceedings of International Workshop

155

Bibliography

on Memory Management, volume 637 of Lecture Notes in Computer Sci-

ence, University of Texas, USA, 16–18 September 1992. Springer-Verlag,

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. Founda-

tions of Computing series. MIT Press, Cambridge, Massachusetts, February

1993.

[Wir] Niklaus Wirth. A Brief History of Modula and Lilith, http://www.

modulaware.com/mdlt52.htm.

[Wir85] Niklaus Wirth. Programming in Modula-2. Texts and monographs in com-

puter science. Springer, Berlin, 3rd edition, 1985.

[Wir96] Niklaus Wirth. Compiler Construction. Addison-Wesley, 1996.

[WK92] Paul R. Wilson and Sheetal V. Kakkad. Pointer swizzling at page fault time:

Efficiently and compatibly supporting huge addresses on standard hardware.

In International Workshop on Object Orientation in Operating Systems, pages

364–377, Paris, France, September 1992. IEEE Press.

[WMR
�

95] Tim Wilkinson, Kevin Murray, Stephen Russell, Gernot Heiser, and Jochen

Liedtke. Single address space operating systems. Technical Report UNSW-

CSE-TR-9504, School of Computer Science and Engineering, University

of New South Wales, Australia, 1995, ftp://ftp.cse.unsw.edu.au/pub/

doc/papers/UNSW/9504.ps.Z.

[Wya94] Geoff Wyant. Introducing modula-3. Linux Journal, 8, December 1994, ftp:

//ftp.gte.com/pub/m3/linux-journal.html.

[Yok92] Yasuhiko Yokote. The apertos reflective operating system: The concept

and its implementation. In Andreas Paepcke, editor, Proceedings of the

Conference on Object-Oriented Programming Systems, Languages, and Ap-

plications (OOPSLA), volume 27, pages 414–434, New York, NY, Octo-

ber 1992. ACM Press, ftp://ftp.csl.sony.co.jp/CSL/CSL-Papers/92/

SCSL-TR-92-014.ps.Z.

[Yok93] Yasuhiko Yokote. Kernel Structuring for Object-Oriented Operating Systems:

The Apertos Approach. In Object Technologies for Advanced Software, vol-

ume 742 of Lecture Notes in Computer Science, pages 145–162. First JSSST

156

Bibliography

International Symposium, November 1993, ftp://ftp.csl.sony.co.jp/

CSL/CSL-Papers/93/SCSL-TR-93-014.ps.Z.

[YTM
�

92] Yasuhiko Yokote, Fumio Teraoka, Atsushi Mitsuzawa, Nobuhisa Fujinami,

and Mario Tokoro. The Muse Object Architecture: A new operating system

structuring concept, pages 27–51. May 1992.

[Zan91] Fausto Zanasi. Teoria e pratica del linguaggio Prolog. Calderini, 1991.

157

