
A New Approach To Real-Time Checkpointing

Antonio Cunei Jan Vitek
Department of Computer Science

Purdue University
West Lafayette, IN 47907, USA
{cunei,jv}@cs.purdue.edu

Abstract
The progress towards programming methodologies that simplify
the work of the programmer involves automating, whenever pos-
sible, activities that are secondary to the main task of designing
algorithms and developing applications. Automatic memory man-
agement, using garbage collection, and automatic persistence, us-
ing checkpointing, are both examples of mechanisms that operate
behind the scenes, simplifying the work of the programmer. Imple-
menting such mechanisms in the presence of real-time constraints,
however, is particularly difficult.

In this paper we review the behavior of traditional copy-on-
write implementations of checkpointing in the context of real-time
systems, and we show how such implementations may, in patho-
logical cases, seriously impair the ability of the user code to meet
its deadlines. We discuss the source of the problem, supply bench-
marks, and discuss possible remedies. We subsequently propose a
novel approach that does not rely on copy-on-write and that, while
more expensive in terms of CPU time overhead, is unaffected by
pathological user code. We also describe our implementation of the
proposed solution, based on the Ovm RTSJ Java Virtual Machine,
and we discuss our experimental results.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design—Real-time systems and embedded sys-
tems; D.4.5 [Operating Systems]: Reliability—Checkpoint/restart

General Terms Design

Keywords Real-time, Checkpoint, Java, Virtual Machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-332-6/06/0006. . . $5.00.

1. Introduction
Checkpointing and rollback recovery are important mechanisms
used to improve the fault-tolerance of a system. Should a transient
fault occur, like a crash, a power failure, a hardware glitch, or even
a transient software error, the most recently saved state can be re-
stored and execution simply resumed. The increased reliability that
is obtained is particularly appealing in the context of embedded
and real-time systems, where manual intervention in case of prob-
lems might be impractical, or impossible. Within the context of a
virtual machine (VM), the mechanism can be implemented at the
VM level, mostly hiding the details of the checkpointing operations
from the user code.

Despite the attractiveness of the technique implementing check-
pointing in a real-time system is far from easy. The time-critical na-
ture of real-time systems imposes precise constraints that the imple-
mentation must respect in terms of latency, overhead, and consump-
tion of resources. A real-time virtual machine, for instance a sys-
tem that implements the Real-Time Specification for Java (RTSJ)
[5], has to deal with such constraints in a similar way.

In particular we want our checkpointing scheme to be non-intru-
sive, meaning that it should not interfere in the regular operation of
the threads that run user code accessing and modifying memory as
they progress, the so-called “mutators” [8]. Consequently, it must
not suspend such threads for too long (it must exhibit low latency),
nor cause excessive slowdowns or variations in their execution
speed, making it difficult for the programmer to reason about the
ability of their code to meet the required deadlines. Trivially, the
checkpointing operation must complete in a bounded time. We want
it to be available on common hardware and operating systems.
Finally, we prefer it to use efficiently system resources, for example
main memory.

In this paper we discuss previous attempts at defining an ef-
fective mechanism for the implementation of real-time checkpoint-
ing, and in particular the use of copy-on-write in order to save a
snapshot of active memory while allowing the mutators to continue
their execution. After describing existing approaches discussed in
literature, we show how copy-on-write presents non-obvious prob-
lems that are in direct conflict with the desired real-time charac-
teristics of the system. In particular we show that worst-case se-
quences of operations performed by the mutators while a back-
ground checkpointing is underway may cause the mutator itself to
be slowed down dramatically, regardless of its priority. Deadlines
may be missed as a result.

In order to avoid the problem, we introduce an alternative and
novel technique that, at the price of some CPU time overhead, en-
sures that the mutators will never slow down unexpectedly because
of a concurrent checkpointing operation, making our approach par-
ticularly suitable for real-time applications. We also show how our
technique can be concretely implemented using commonly avail-
able POSIX system calls, and we describe our implementation on

68

the Ovm Real-Time Java Virtual Machine. The target applications
of this work are safety/mission-critical embedded systems such as
avionics applications where temporary power failure is a real pos-
sibility and fast restart essential. These applications usually run
on moderately to fairly powerful processors and have hard real-
time constraints. As multiprocessor systems are still relatively un-
common in hard real-time systems, and none of the available real-
time virtual machines support multiprocessors, this work focuses
on uniprocessor machines.

2. Implementation Strategies
The simplest possible approach to checkpointing is suspending the
execution of all the mutators, saving the required state (typically
a block of memory), and then resuming execution. Such a stop-
the-world checkpointing trivially prevents the mutators from pro-
gressing for the whole duration of the operation, preventing high-
priority threads from assuming control if needed. That approach is
therefore not suited to a real-time context. The time required for a
memory-to-memory copy, even on modern, high performance ma-
chines, can be quite high. Additionally, the time required increases
with the size of the memory area that needs to be saved, therefore
scalability becomes a concern.

Table 1 shows the time required to copy memory blocks using
memcpy() on various computer systems.

�����������	�
�����	�������� � ��

�	������	�

���		������������ � ��

��
����
��
�����	��
������������
� ��

���	�����	�����
���
����	�������� �� ��

	�
���������	�
�
�	�����
������� �� ��

�����

���������
��
�������� � ��

�����

�������

�����

���

�����

���� ��
�!�"# $

%��& �� &�
!'(� �) �� *�&*&

+����� �, �- � 	.�
 �/0�1� �	 ��	��2� ��� ��
����
� ��� ���

+��3.4 �/0�1�, �- � �/0�1� �	
����2� ��3.4 ��13�
 ������1���
�� ���

+��3.4 4��, �- � 	.�
 ��� �56�1/3 � ����2� ��3.4 ��13�
 ����

�
�� ��� ���

+��3.4 ������, �- �3 ����		�	 �
�3�6 �/�1	 0� ������ �����2� ��3.4 ��13�
 ������� �	��� ���

Table 1. Time required to copy memory

In order to reduce the latency, and to create an implementation
that is suitable for real-time applications, it makes sense to adopt a
concurrent model of checkpointing. When the operation is initially
started, the state of the memory at that time must be somehow
preserved. While a background thread takes care of storing the
saved state, execution should be free to resume normally, allowing
high-priority threads to intervene when necessary.

2.1 Copy-On-Write

In order to preserve the state of the memory without having to copy
it all at once, Li, Naughton, and Plank suggested the use of a “copy-
on-write” mechanism [16, 17], by which, when a checkpoint is
requested, all of the pages in the relevant memory area are copy-
protected by using the Memory Management Unit. The execution
of the mutators is then promptly resumed, while a background
thread saves the write-protected pages. If a mutator tries to alter the
memory content, a page access violation is triggered by the MMU
and that single page is quickly copied in a separate buffer, allowing
the mutator to continue without excessive delays.

3. Worst-Case Scenario
The use of copy-on-write, in principle, appears perfectly suited
to real-time applications. The mutator is only suspended for the

time strictly necessary to copy the block of memory imposed by
the MMU granularity (usually a few kilobytes) after which the
computation can resume. It can be expected, therefore, that the
resulting latency is extremely modest. However, there is a fallacy in
such expectation, which derives from a lack of assumptions about
the memory access pattern of the mutators.

Consider, for example, the following scenario. Let us assume
that the area of memory that should be saved during checkpointing
is 64 megabytes and that the MMU has a granularity of memory
protection of 4 kilobytes. When a checkpoint operation is requested
by an application or by the system using copy-on-write, 16,384
pages are immediately made write-protected. From this moment
on, each write operation performed by the mutator on a protected
page will trigger a page fault, a 4KB memory copy, and a change
in protection in the MMU tables.

Since no assumption is made about the memory access pattern
of the mutator, the system must be able to cope with any subsequent
mutator operation. In the worst case, the mutator might perform
16,384 subsequent write operations, each in a different page! The
net result is that a task that would normally require just a handful
of memory writes, requires now a full 64MB memory copy, plus
16,384 page access faults and that many MMU access changes, re-
quiring overall a considerably longer time to complete. Regardless
of the priority and the urgency of the mutator’s activity, execution
cannot continue until all of the mentioned operations are complete.
Such large overhead can seriously affect the ability of the mutators
to meet their deadlines, and is obviously detrimental to the real-
time characteristics of the system.

������
��
���
	�����		�����
��

����� 01�6�-� ���� 01�6� ��.-�- /3� ����-- 7�/
�6�/3�

/3� 5��� �/58� �3	 � ���3�� �3 5��� 51/6��6�/3

������

�	��
�
�����
	�����

����� 01�6�-� ���� 01�6� ��.-�- /3� ����-- 7�/
�6�/3

�3	 � ���3�� �3 5��� 51/6��6�/3

����	
�������
���
���//5 /�
����� 01�6�-� /3� 5�1 5���

��3.4

������

��3.4

4��

��3.4

�/0�1�
����� � ���- �3 �-� �7�1���- /� 60�368 1.3-

Table 2. Memory access times

A concrete measurement of the impact of copy-on-write in such
a worst-case scenario is shown in Table 2. Even though the latency
involved by each individual memory access fault is relatively small,
the total slowdown is dramatic.

An application in which a large number of objects need sparse
updating would be particularly sensitive to this issue. For example,
a fast network router that keeps detailed traffic accounting infor-
mation for remote nodes in a RAM-based database would need to
update sparse information continuously in response to all the traf-
fic simultaneously flowing through the device, leading to memory
access patterns of the kind described.

In order to contain the overhead, and to give a precise upper
bound to the overhead required by checkpointing, it is necessary to
restrict the number of pages written to by the mutators whenever
a checkpointing might be underway. Such a condition is extremely
impractical to calculate and to enforce, especially considering that
multiple threads might be in execution concurrently. Although it
is reasonable to assume that the mutators exhibit the usual mem-
ory locality properties, the strict guarantees required by real-time
systems cannot be fully satisfied when using copy-on-write check-
pointing, unless precise assumptions are made about the memory
access patterns of the mutators.

69

���� ���� ��	�
�������	 ���

���� �� �	��� ����� �	���
�������

	
���

�������

	
���

����
 ��
�������

Figure 1. Main and shadow regions

4. A different approach
The troubles involved in the use of copy-on-write led us to devise
a different kind of memory management technique, which avoids
the problems previously described. Recalling the earlier discussion,
the key to performing a concurrent checkpointing is being able to
preserve, by some means, the state of memory at a given moment.
In principle, nothing prevents us from maintaining a mirror copy
of the main memory, constantly updated while the mutators run.
When a checkpoint is encountered, the updates to the mirror copy
can be suspended, and the mirror used for checkpointing while
the mutators continue unimpeded. While this approach requires
an auxiliary block of memory as large as the main memory, it
is worth pointing out that copy-on-write has the same worst-case
requirement: as we have seen, a full copy of the whole memory can
be triggered in a very short time, arguably before even the first page
has been fully transferred to permanent storage.

Maintaining a mirror copy of the main memory is easier if spe-
cial hardware is used, but it can also be done purely in software
by adding so-called write barriers, short sequences of instructions
that follow write operations in the program code. We will show in
the next section how, by using the Memory Management Unit in a
rather unconventional way, we can not only keep the overhead re-
quired by the mirror copy down to a reasonable minimum, but we
can also minimize the required latencies while keeping the execu-
tion speed of high-priority mutators easily predictable, making this
approach very suitable for use in real-time systems.

4.1 Mirror Copy

We would like to implement a memory mirroring system purely in
software. Therefore, every time something is written to memory,
the same value must also be written to the mirror copy, but only if
a concurrent checkpointing operation is not currently in progress.
The write barrier, therefore, must involve some logic that allows
the additional writes to be performed conditionally. The presence of
write barriers involves some degree of cooperation by the compiler,
or by the virtual machine. On the other hand, adding the required
logic to an existing compiler or VM is relatively straightforward.
Write barriers are used, for example, in generational garbage col-
lectors [26] and are also usually involved in the implementation of
scoped memory, as defined by the Real-Time Specification for Java
(RTSJ) [5].

���� ���� ��	�
������

���� �� �	����
���� �	����
�������

	
���

�������

	
���

����
 ��
�������

����� ��	�

Figure 2. Preserving the snapshot

In our case the write barrier should detect whether a checkpoint-
ing is underway, and if not perform an additional memory write in
a separate memory region. In detail, the write barrier should in-
clude a test instruction, a branch instruction (if checkpointing then
do nothing), and the write operation to the mirror copy, possibly
including the address calculation for the destination in the mirror
copy. If some space in a machine register cannot be permanently
sacrificed as a flag to indicate that a checkpointing is underway, an
additional read from memory has to be added to the sequence.

Such a complex write barrier can cause a large penalty on the
performance of the mutator. On the other hand, having a mirror
copy available at all times would enable us to perform a check-
pointing at any moment while maintaining a more predictable exe-
cution speed of the mutators. We manage to reduce to a minimum
the performance impact of maintaining a mirror copy by using in
an unconventional way the Memory Management Unit (MMU), as
explained in the next subsections.

4.2 Moving Mirror

Figure 1 shows how the organization of memory would look like in
a system that implements memory mirroring using write barriers.
We will also refer to the mirror copy using the term “shadow”.

Since the mirrored copy is actually accessed through the MMU,
an effective alternative to using an explicit test in the write barrier
is to simply modify the MMU tables so that, when a checkpoint
is underway, the updates to the mirror are redirected to a differ-
ent area, and basically discarded. Altering the MMU mappings is
a relatively quick operation that can be performed atomically. The
tests can be therefore removed from the write barriers, reducing
the additional code to a single additional write operation, which
is always executed. When the mirror is being updated the MMU
mapping will direct the additional writes to the copy. Conversely,
when the checkpointing is being executed the additional writes will
be redirected elsewhere, as shown in Figure 2. Using a third area

���� ���� ��	� �������

���� �� �	��� ����� �	���
�������

	
���

�������

	
���

����
 ��
�������

Figure 3. Writing twice the main data area

of real physical memory would obviously be quite wasteful, espe-
cially on memory-constrained embedded devices. A possible ap-
proach would be altering the mapping following the scheme shown
in Figure 3, in which both the main VM region and the shadow are
redirected onto the main physical memory area. In practice, this ap-
proach can still cause problems. In many microprocessor families
it is important to explicitly reschedule machine instructions in or-
der to keep the execution pipelines within the microprocessor full.
Rescheduling the memory writes belonging to the write barriers,
however, would cause unexpected effects, even leading to incorrect
computations. Consider, for example, the code fragment shown in
Figure 4, on the next page, written in a pseudo-assembler style.

The deferred execution of the write barriers can cause incorrect
executions unless the compiler is made aware of the possible mul-
tiple mappings of the same physical memory area. That involves
complicating the alias analysis stage, taking into account the addi-
tional aliasings and the fact that they may be different depending on
whether certain memory areas are subject to the MMU remapping
or not. In the case of the RTSJ, where memory scopes are created

70

and used dynamically and where it is not possible to detect stati-
cally whether memory writes take place in a specific scope or in
the heap, such additional complexity might be undesirable.

read a -> R0

R0 * 2 -> R0

write R0 -> a

write R0 -> a+offs // will be moved

read a -> R1

R1 * 2 -> R1

write R1 -> a

write R1 -> a+offs // will be moved

read a -> R2

// R2 contains R0 * 4

a) before rescheduling

read a -> R0

R0 * 2 -> R0

write R0 -> a

read a -> R1

R1 * 2 -> R1

write R1 -> a

write R0 -> a+offs // a is overwritten !!!

read a -> R2

write R1 -> a+offs //

// R2 contains R0 * 2

b) after rescheduling

Figure 4. Interaction between instruction rescheduling and mirror
writes

4.3 Multiple Mappings

In order to solve that problem, while at the same time using as
little memory as possible, our solution is presented in Figure 5.
During checkpointing, the new configuration of the MMU is such
that every individual page in the addressing space corresponding
to the shadow region is repeatedly mapped over a single, “dummy”
page. Using this unusual but effective arrangement, all of the writes
caused by the execution of the write barriers will end up in the same
page, the eventual content of which will simply be ignored. Since
we are not actually interested in saving the effect of those writes,
the solution is perfectly acceptable. Furthermore, this approach is
also likely to be more efficient than using a full-size additional
memory area, since less commits from the cache to main memory
will be needed (assuming write-back caching, as opposed to write-
through caching).

���� ���� ��	�

����
� �	��� ����� �	���
�������

��	
��

�������

��	
��

�����
������
��

�������

�
�
�
	

�

Figure 5. A single dummy page

The only remaining piece of the jigsaw is enabling access to the
physical memory which contains the snapshot while the shadow
memory region is mapped over the dummy page. We can easily
do so by establishing a further permanent mapping of the snapshot
area onto an additional region of virtual memory, which we will
call “secondary shadow”. This last region can be mapped anywhere
in the addressing space, and will be the interface between the
snapshot data and the checkpointing thread. The complete and final
configurations of the MMU mappings during regular operation
and during checkpointing are therefore represented in Figures 6(a)
and 6(b). It is worth noting that, regardless of the complexity of
the MMU mappings, switching from one to the other is just a
matter of altering a few machine registers and it can be done in
a very small number of instructions, with negligible impact on the
resulting latency.

The actual background checkpointing can be performed as ap-
propriate for the specific application, possibly making use of a
number of techniques widely known in literature in order to min-
imize the amount of data actually transferred to the storage unit

(recording differences with respect to the previous checkpoint, us-
ing “dirty pages” information, performing static program analysis,
and so on). The specific strategy used to save data is completely
orthogonal to our solution, and any mechanism will do as long as
it respects the real-time constraints required by the system in terms
of latency, and in terms of the total time allotted to the background
checkpointing thread to complete.

�������	
 ������

��� ���� �	��

��� � ������ ������ ������
�������

	
���

�������

	
���

����
 ��
�������

���������� ���

�
�
�
�

6(a) During regular operation

�������	
 ������

��� ���� �	��

��� � ������ ������ ������
�������

	
���

�������

	
���

����
 ��
�������

��������

�
�
�
�

�

���
 �� ������

6(b) During checkpointing

Figure 6. The complete memory configurations

4.4 Resynchronization

We have talked so far about maintaining an up-to-date shadow copy
of the relevant memory region, and about detaching said copy in
order to obtain a snapshot of the memory state at a given point
in time. Once the background checkpointing is complete, it is
necessary to resynchronize the state of the shadow with the main
memory region, so that the cycle can start again.

Performing the resynchronization is particularly easy. To begin
with, the MMU mapping is restored to the non-checkpointing con-
figuration. From this moment on, all the write barriers will write
again on both the main memory area and on the physical memory
that contained the snapshot. In order to realign the two regions, it is
now sufficient to scan linearly the main memory area and perform a
simple copy of its content over the shadow. If the system offers in-
formation about so-called “dirty pages”, identifying the pages that
have been written to since the snapshot was last detached, the copy
can be sped up by only copying those pages. The copy takes place at
a lower priority than more urgent threads, and the synchronization
can be preempted. It is necessary to make sure that no interference
between the background copy and the regular mutators takes place.
That is easy to ascertain in virtue of the following considerations.

To begin with, we should notice that we cannot allow a context
switch to take place between the memory write and the correspond-
ing write barrier. If a different thread were to write to the same
memory location, the content of the shadow would become stale.
If the write operation and the corresponding write barrier are exe-
cuted atomically, it is sufficient to make sure that no context switch
takes place between a read and the matching write during the resyn-
chronization copy. Both conditions can be easily satisfied if, as is
frequently the case in uniprocessor systems, yield/safe points are
used for thread switching.

In the case of preemptive scheduling, the requirement of having
atomicity of write and write barrier is no more stringent than what

71

is normally required by other very popular memory management
schemes that involve write barriers, as for instance generational
garbage collectors. The issue was discussed in some detail by
Stichnoth et al. [24].

The atomic section in the background copy can be at a minimum
literally just two machine instructions long, enclosing one read and
one write, and therefore the operation has negligible impact, once
again, on the overall latency.

5. A Concrete Implementation
We have implemented our solution in the context of the Ovm
Real-Time Java framework, developed at Purdue University. Our
implementation relies on common POSIX mechanisms, and uses
some facilities offered by the Linux kernel. We will now shortly
describe how the mechanisms introduced in the previous section
have been implemented, and the following section will present our
results.

5.1 MMU Mappings

There are two main classes of POSIX library calls that can be
used to alter the mapping of virtual memory: mmap() utilities and
shared memory calls. The call mmap() is normally used to support
memory-mapped files, but it can also be used to reserve and map
anonymous memory without a corresponding backing file. How-
ever, it cannot be used to map the same block of anonymous mem-
ory twice. Shared memory is more flexible in this respect, and it
was used in our implementation.

A minor drawback of the shared memory mechanism is that
there is no single call available in the standard that can be used
to switch from one set of MMU mappings to another one atomi-
cally, as we would need. Switching between the different configura-
tions, therefore, implies performing atomically a group of multiple
shmat() and shmdt() calls.

In order to limit the number of operations, we allocate a dummy
area equal in size to a given fraction of the size of the main
memory area. If the snapshot size is one megabyte, for instance,
we map sixteen times a unique 64KB dummy area. This strategy
allows us to limit the total number of operations executed in the
atomic section while still using a very modest amount of additional
memory.

The remapping performed by shmat() and shmdt() may be
time-consuming on some systems. As memory remapping is a
relatively infrequent operation in most applications, the time used
by some implementations may depend on the number of page
mappings that need to be altered.

In our case we neatly sidestep the issue by taking advantage of
the ability offered by modern microprocessors to use multiple page
sizes simultaneously. By using the “Huge TLB” feature available in
the Linux kernel, we can use pages large several megabytes rather
than a few kilobytes. As the number of page mappings stored in
the MMU tables is greatly reduced, the execution time of shmat()
and shmdt() drops dramatically. On our test system, detailed later,
switching the mapping of 16MB of memory requires just a few tens
of microseconds.

The Real-Time Specification for Java defines three kinds of
memory areas used for data storage: heap, scoped regions, and im-
mortal memory [6]. In our test implementation we have decided
to checkpoint immortal memory only, on the grounds that infor-
mation stored in immortal memory is by definition long-lived, and
more likely to deserve preservation across system crashes. Saving
the entire heap would have been equally possible. Since, in the con-
text of the RTSJ, it is quite difficult to determine statically in which
kind of memory a given memory access will be performed, we must

add a write barrier to all memory writes, regardless of whether the
access is performed in the heap, in scopes, or in immortal memory.

5.2 Copying Data

Once a snapshot is frozen, the data can be stored on permanent stor-
age. This phase requires particular attention in order to avoid intro-
ducing unwanted latency. As the Ovm system implements multi-
threading using “green threads” (user-lever thread scheduling), it
was particularly important for us not to block on I/O operations.
Support for fully asynchronous I/O had to be included, therefore,
in the checkpointing mechanism. On particularly sensitive systems
it may be advantageous to control the raw block device correspond-
ing to the storage unit directly, bypassing the file system altogether.
In our case, a high transfer rate of the checkpointed data was not
a pressing requirement, while low latency was instead the defin-
ing aspect. Consequently we used the Asynchronous Input/Output
(AIO) library calls, as defined in the POSIX.1b real-time exten-
sions. Such calls are now available, with varying implementation
efficiency, on many operating systems including Linux, Mac OS X,
Solaris, and others. In order to remove possible latency originating
from the open() operation, we set up the checkpoint file so that it
is opened just once, at startup time, while only asynchronous calls
are used afterwards.

5.3 Resynchronization

After all the data has been copied, the current state of the immortal
memory is resynchronized, so that a new checkpoint can be started.
As previously seen, it is important to avoid interference between the
background copy and the mutators. In Ovm yield points never occur
between the main write and the write barrier, nor between reads and
writes during the copy, therefore the background copy is inherently
safe. To perform the operation efficiently without impacting too
much on latency, we implemented the synchronization copy using
plain memcpy() calls on small chunks of memory, so that control
can be promptly relinquished if high-priority threads need to run.

Summarizing, when a checkpointing is requested the implemen-
tation swaps atomically the MMU mappings using POSIX shared
memory primitives and spawns a low-priority thread that takes
care of the remaining stages of the checkpoint. The checkpointing
thread enqueues the necessary asynchronous I/O operations using
the AIO library, scheduling the transfer of the memory snapshot
(using the secondary shadow address range) to disk. It then waits
for the operating system to complete the asynchronous operations.
Once all I/O is terminated, and all the I/O buffers have been prop-
erly flushed to disk, the checkpointing thread swaps MMU map-
pings again and proceeds with the synchronization, after which the
procedure is complete, leaving room for further checkpointing op-
erations.

6. Measurements
We measured the performance of our test bed implementation, with
particular attention to the overhead of the write barriers and to the
latencies of our checkpointing scheme. In particular, achieving low
levels of latency is crucial in a real-time setting. The data obtained
by our testing shows that the impact on the performance levels of
the write barriers, while sensible, is overall contained thanks to
our use of the MMU facilities. The latencies introduced by our
mechanism are, as expected, quite small.

72

Test original w/barrier overhead
_201_compress 9.118 10.095 10.72%
_202_jess 4.376 4.928 12.61%
_209_db 13.952 16.814 20.52%
_213_javac 7.607 8.931 17.41%
_222_mpegaudio 11.691 12.117 3.64%
_227_mtrt 3.765 4.398 16.80%
_228_jack 7.432 8.306 11.75%

Table 3. Write barriers overhead

Table 3 shows a summary of the execution times, in seconds, of
a number of SPECjvm benchmarks. The time required to run the
tests on the stock Ovm are compared with the execution times on
our modified version. The ahead-of-time, fully optimizing compiler
of Ovm was used to run all the tests. The system used for the tests
was a dual AMD Opteron 2.4GHz, Linux kernel 2.6.11.10, 6GB of
RAM, using a 256MB heap, and the SPECjvm problem size was
set to 100. The times are averages of 20 runs.

The overheads shown in the table may appear rather small, con-
sidering that the technique involves the duplication of all memory
writes. However, several factors should be taken into account. First
of all, Ovm implements the region-based memory management
scheme required by the Real-time Specification for Java (RTSJ)
[5], which requires some run-time checks to be performed during
execution. The resulting overhead may contribute, to an extent, to
mask the cost of the additional write barrier.

Other factors should also be considered. While in our imple-
mentation all writes induced by the program are duplicated, so that
immortal memory is duplicated as well, the memory writes per-
formed by the garbage collector are not replicated, as immortal
memory is not affected by garbage collection in any case. That al-
lows us to avoid some duplication overhead. Finally, although it
might be expected that the processor cache efficiency is reduced by
the additional memory accesses, it may be useful to point out that
only writes are actually duplicated, while the shadow copy is never
read from during the normal program execution. In our implemen-
tation, additionally, only the immortal memory is fully duplicated,
while the heap is shadowed by repeatedly mapping a single mem-
ory block. As a consequence, the pressure on the cache is actually
rather lower than what might be perceived thinking about a com-
plete duplication of the memory areas.

It should be noted that such overhead is rather easy to predict
for the programmer, being fundamentally associated with the ex-
ecution of write operations. That is in stark contrast with the be-
havior of copy-on-write checkpointing, where a large and sudden
slowdown might arise depending on conditions that are much more
difficult to control, as discussed in Section 3.

In order to determine the all-important latency introduced by
our checkpointing mechanism, we have conducted tests using the
periodic real-time thread facility offered by the RTSJ. By measur-
ing the time difference between the expected beginning of each pe-
riod and the actual time when the thread resumes execution we can
evaluate the latency introduced by lower-priority threads.

In detail, in our setup a low-priority thread initially allocates a
large array in immortal memory. Subsequently, in an infinite loop,
it performs the following actions:

• it sets up the array by storing in it some arbitrary data, overwrit-
ing one word every 4KB of memory

• it then sends a request to a checkpointing daemon, initiating the
background checkpointing operation

• as the checkpointing proceeds, in the background, it quickly
modifies the previous content of the array. We expect the check-

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

1 124 247 370 493 616 739 862 985 1108 1231 1354 1477 1600 1723 1846 1969

Samples

M
il
li
s
e
c
o
n
d
s

Figure 7. Response time of a periodical RTSJ real-time thread,
period is 150ms with 10ms precision, standard Ovm

pointing daemon to save the previous content of the array, as it
was when the operation started, rather than the new one.

• the low-priority thread then waits for the background check-
pointing to complete.

While all that happens, a high-priority thread is created, started, and
suspended. A timer is prepared so that it triggers the high-priority
thread at specified intervals. Such thread keeps the cpu busy for a
short while and then suspends itself again, waiting for the following
timer event. As our scheduling scheme uses priority preemption, we
expect the high priority thread to execute immediately, preempting
both the low-priority thread and the checkpointing daemon.

That allows us to give a first estimate of the latency imposed by
the background checkpointing. Each time the high-priority thread is
started, the current time is checked against the expected occurrence
of the timer event. If some background activity prevents the high-
priority thread from promptly resuming execution, such delay is
detectable as additional latency, measured as the time from the
expected timer event to the actual moment in which execution of
the high-priority thread resumes.

The timer precision offered by the Linux kernel is 10 ms, which
means that each timer event can occur up to about 10 ms after the
programmed time. As we used a periodic timer, with a 150 ms
period, our events are fired up to 10 ms after the beginning of each
period.

As opposed to the timers, the clock has a much higher precision,
allowing us to measure time differences with a resolution of 1 µs.
We use that clock to measure the delay from the start of each period
to the beginning of the activity of the high-priority thread. A delay
of up to 10 ms is normal and due to the timer precision. Any delay
significantly greater than 10 ms would indicate the presence of
a non-interruptible section in the checkpointing daemon, offering
us a first estimate of the latencies introduced by the background
checkpointing.

We sampled the latency as described above 2000 times, using a
period of 150 ms, comparing the standard Ovm configuration, with
just the high-priority thread running, against our customized ver-
sion of Ovm, with the checkpointing daemon and the low-priority
thread in addition. The latter was used to trigger continuously and
without pauses repeated background checkpoints of a 24MB array
allocated in immortal memory (plus about 2MB of additional im-
mortal space used by Ovm).

Figure 7 shows the graph obtained using the standard Ovm con-
figuration, with no background threads. Since the declared timer

73

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

1 124 247 370 493 616 739 862 985 1108 1231 1354 1477 1600 1723 1846 1969

Samples

M
il
li
s
e
c
o
n
d
s

Figure 8. Response time of a periodical RTSJ real-time thread,
period is 150ms with 10ms precision, background checkpointing

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

375 381 387 393 399 405 411 417 423 429 435 441 447 453 459 465 471 477 483 489 495

Samples

M
il
li
s
e
c
o
n
d
s

Figure 9. Response time of a periodical RTSJ real-time thread,
period is 150ms with 10ms precision, background checkpointing,
detail

resolution is 10 ms, the variation in the response time is overall
normal and within the expected limits.

Conversely, the graph shown in Figure 8 shows the response
times of our complete configuration, in which data is constantly
mirrored and the low-priority threads repeatedly save the content
of the immortal memory. During the time represented in the graph
(5 minutes) the checkpointing daemon saved the 24MB area about
350 times. The delay introduced by the background checkpointing
is almost unnoticeable, showing up in the graph only in a couple of
points. Figure 9 offers a detail of the same test, pointing to a latency
due to the checkpointing daemon of about 0.2 milliseconds.

In order to validate that measurement we instrumented the sys-
tem, measuring the maximum time used by the non-interruptible
sections within the time-critical checkpointing daemon. All mea-
surements were taken using the same clock as before, with a 1 µs
resolution. As a stress test, we ran a long-running test twice, mea-
suring 40,000 samples, using a period of 60 ms, while saving more
than 24MB of immortal memory to disk in the background approx-
imately 2800 times. The two tests ran for a total of 1 hour and
20 minutes. The maximum latency was still just over 0.2 millisec-
onds.

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

1 124 247 370 493 616 739 862 985 1108 1231 1354 1477 1600 1723 1846 1969

Samples

M
il
li
s
e
c
o
n
d
s

Figure 10. Response time of a periodical RTSJ real-time thread,
period is 150ms with 10ms precision, validation test with 20ms
non-interruptible pauses

Figure 10 shows the result of a further test that we used to
validate our earlier test. Here, the part of code that saves data to
disk in the checkpointing daemon was replaced with a routine that
occasionally, at random, enters a 20 ms non-preemptible busy loop.
The resulting delays clearly appear in the graph, confirming the
correctness of our methodology.

7. Comparison with Copy-On-Write
In order to make a more direct comparison, we also implemented
a copy-on-write checkpointing scheme in Ovm, and compared the
behavior of the two implementations in terms of latency and impact
on high-priority mutators. In this implementation, copy-on-write
has at its disposal a buffer as large as the one we used for the previ-
ous technique, and the mechanisms used to save the checkpointing
file and to spawn the background checkpointing daemon are iden-
tical. The scheme that we implemented works as follows. When a
checkpointing is requested, the entire memory area that needs to be
checkpointed (the RTSJ immortal memory in our case) is write pro-
tected, and control returns to the mutator. The low-priority check-
pointing daemon begins to copy the memory pages in the back-
ground from the write-protected memory area to the side buffer. As
each page is copied, its protection status is restored to read/write.
If a mutator needs to write to a page that has not yet been copied,
an illegal access signal is generated and the corresponding page is
immediately copied to the buffer. A flag is kept for each page in the
buffer, so that the checkpointing daemon can detect as it progresses
that certain pages have already been copied, and will not copy them
again.

When the background copy is complete, the side buffer contains
a complete copy of the state that must be checkpointed and, sim-
ilarly to our main technique, asynchronous I/O POSIX operations
are used to save its content to disk. Once that operation is complete,
the checkpointing daemon simply suspends itself, waiting for new
requests. We used copy-on-write and our double-write approach to
conduct a comparison, that we now describe in more detail.

In this test, a low-priority thread allocates a 24MB array in
immortal memory. It then repeatedly fills it in with some random
value, and requests a checkpoint, which is performed according
to one of the two mechanisms earlier described. The low-priority
thread then waits for the checkpointing to be complete, after which
the sequence repeats. At the same time, a high-priority thread is
triggered every 150 ms, similarly to our previous setting.

74

Each time the high-priority thread is triggered, it checks the cur-
rent time, writes in the 24MB array some random value (one word
every 4KB), then checks the current time again. The first measured
time, when compared with the expected beginning of the period, of-
fers us an estimate of the same kind of latency measured in the pre-
vious experiment. The difference between the two measurements,
instead, tells us how long it took for the high-priority thread to com-
plete its loop.

The measured preemption latency was similar in the two con-
figuration, which is unsurprising considering that the same asyn-
chronous operations were used to save the data. However, the time
required by the high-priority thread to complete its task was consid-
erably different, as shown in Figures 11 and 12. Using our scheme,
the high-priority thread completed its task consistently in under
0.6 ms. Using copy-on-write the time varied widely, reaching val-
ues as high as 17.2 ms. This direct comparison confirms that ad-
verse memory access patterns of the mutators impact heavily on
copy-on-write, while our technique is not affected.

8. Additional considerations
The proposed technique offers better real-time guarantees than
copy-on-write whenever, as is usually the case, the memory access
patterns of the mutators cannot be precisely determined. A possible
criticism is that the buffer region needs to be as large as the memory
region that we want to checkpoint. While it is true that two copies
of the memory region are required, it should be noted that copy-on-
write has, in the worst case, the same limitation, as we previously
mentioned. The technique suggested by Li et al. [16, 17] uses a
fixed size buffer, but that buffer would be quickly filled up by a
rapid sequence of page faults. As a consequence checkpointing
would block, not just because of the page copies but because the
buffers must be flushed to disk before it can be used again to copy
new pages. In order to avoid pauses, the copy-on-write buffer has
to be, once again, as large as the main memory region.

The use of the MMU is part of the novelty of this work, and its
use allows us to reduce the write barrier to just one additional write
instruction. Some variations on our approach could also be applied,
however, to simpler embedded processors that do not use a mem-
ory management unit. A simple approach, previously mentioned, is
testing explicitly a flag and performing the write operation condi-
tionally. A possible alternative is performing the second write at an
address obtained by summing the original address to an index reg-

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1 94 187 280 373 466 559 652 745 838 931 1024 1117 1210 1303 1396 1489 1582 1675 1768 1861 1954

Samples

M
il
li
s
e
c
o
n
d
s

Figure 11. Double writes/MMU approach, execution time of a
sample task in a high-priority thread, 2000 samples shown.

ister dedicated to that purpose, if one is available. By modifying the
index register, all mirror writes would end up in a different mem-
ory range that does not refer to any physical memory. The memory
controller, however, might have to be properly configured in order
to acknowledge the fictitious writes as if physical memory were
mapped to that address. Finally, since the MMU-based remapping
described in the paper is relatively straightforward, it could also be
implemented on systems without a MMU by adding some minimal
external logic in hardware, implementing a memory multiplexing
mechanism.

9. Related Work
While the literature on checkpointing is very rich and extensive, the
work done specifically on real-time checkpointing is surprisingly
modest. Li, Naughton, and Plank were the first to describe the ap-
plication of copy-on-write in checkpointing [16]. Their work was
then further refined, and a following paper by Plank and Li [17] pre-
sented a “low-latency, concurrent checkpointing” algorithm. Their
low latency was defined as shorter than 0.1 seconds.

The natural complement to this and other papers with imple-
mentation details is the analysis of the schedulability character-
istics of systems in the presence of checkpointing. Punnekat et
al. [20, 22] analyze the schedulability issues involved in real-time
checkpointing. Other related analyses are made by Shin et al. [23],
Kwak et al. [13, 14], Zhang and Chakrabarty [32], Ranganathan
and Upadhyaya [21] and others. Vaidya [28, 27] describes the cor-
relation between overhead and latency in checkpointing.

The bibliography on checkpointing in general is extremely vast.
The papers mentioned above, and the ones listed in the references
section of this paper, can be an initial starting point for the inter-
ested reader.

10. Conclusions
Checkpointing is an attractive technique, useful to provide full or
partial recovery capabilities after a system failure or during normal
run-time, as well as for debugging purposes by preserving informa-
tion after a system crash. The strict time constraints typical of real-
time systems, however, make the implementation of checkpoint-
ing in such contexts particularly difficult. Previous work available
in literature used copy-on-write techniques to implement real-time
checkpointing. Our study, however, indicates that copy-on-write is

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 94 187 280 373 466 559 652 745 838 931 1024 1117 1210 1303 1396 1489 1582 1675 1768 1861 1954

Samples

M
il
li
s
e
c
o
n
d
s

Figure 12. Copy-on-write, execution time of a sample task in a
high-priority thread, 2000 samples shown.

75

not, in general, completely suitable as a core technique for the im-
plementation of real-time checkpointing.

In this paper, we argue that copy-on-write can impose a sud-
den and unexpected overhead on the operation of mutators if no
assumptions are made on their memory access patterns. The diffi-
culties of formalizing and enforcing such assumptions led us to the
formulation of an alternative technique that is not affected by the
memory access pattern followed by mutators.

Our use of a mirror copy, while more expensive in terms of
CPU time overhead, allows the mutators to progress in a way
that can be controlled more easily by the programmer. The novel
use of the MMU allows the required write barrier to be reduced
to a bare minimum. Our experimental implementation, based on
the Ovm RTSJ Java Virtual Machine, confirms our assumptions,
exhibiting low latencies and avoiding the problems associated with
copy-on-write. The latency measured in our implementation was
0.2 milliseconds.

While the CPU time overhead of our approach can be sensible,
depending on the application, the only alternative would be to use
copy-on-write while strictly enforcing the memory access pattern
of all mutators, for every possible scheduling, which can be ex-
tremely difficult in practice. If real-time checkpointing is desired,
and the overhead is deemed to be acceptable, our technique offers
the certainty that no mutator will be unexpectedly slowed down as
a side effect of the concurrent background checkpointing activity.

We would like to thank the anonymous reviewers for their in-
sightful comments and suggestions. This work was partially sup-
ported by NSF Grants HDCCSR-0341304 and CAREER-0093282.

References
[1] A. W. Appel and K. Li. Virtual memory primitives for user

programs. In 4th International Conference on Architectural Support
for Programming Languages and Operating System (ASPLOS),
volume 26, pages 96–107, New York, NY, 1991. ACM Press.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In POPL
’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 285–298, New York,
NY, USA, 2003. ACM Press.

[3] R. Bettati, N. Bowen, and J. Chung. Checkpointing imprecise
computation. In IEEE Workshop on Imprecise and Approximate
Computation, pages 45–49, Phoenix, AZ, Dec. 1992.

[4] G. Bollella, T. Canham, V. Carson, V. Champlin, D. Dvorak,
B. Giovannoni, M. Indictor, K. Meyer, A. Murray, and K. Reinholtz.
Programming with non-heap memory in the Real-Time Specification
for Java. In OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 361–369, New York, NY, USA,
2003. ACM Press.

[5] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turn-
bull. The Real-Time Specification for Java. Java Series. Addison-
Wesley, June 2000.

[6] G. Bollella, J. Gosling, B. Brosgol, J. Gosling, P. Dibble, S. Furr,
M. Turnbull, T. J. Bergin, and R. G. Gibson. The Real-Time
Specification for Java. Addison-Wesley, New York, NY, 2000.

[7] G. Candea, J. Cutler, and A. Fox. Improving availability with
recursive microreboots: a soft-state system case study. Perform.
Eval., 56(1-4):213–248, 2004.

[8] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
In Lecture Notes in Computer Science, No. 46. Springer-Verlag, New
York, 1976.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance
of consistent checkpointing. In Symposium on Reliable Distributed
Systems, pages 39–47, 1992.

[10] R. Geist, R. Reynolds, and J. Westall. Selection of a checkpoint
interval in a critical-task environment. IEEE Trans. Reliability,
37(4):395–400, 1988.

[11] V. Grassi, L. Donatiello, and S. Tucci. On the optimal checkpointing
of critical tasks and transaction-oriented systems. IEEE Trans. Softw.
Eng., 18(1):72–77, 1992.

[12] C. M. Krishna, Y.-H. Lee, and K. G. Shin. Optimization criteria for
checkpoint placement. Commun. ACM, 27(10):1008–1012, 1984.

[13] S. Kwak, B. Choi, and B. Kim. An optimal checkpointing-strategy for
real-time control systems under transient faults. IEEE Transactions
on Reliability, 50(3):293–301, September 2001.

[14] S. W. Kwak, B.-J. Choi, and B. K. Kim. Checkpointing strategy
for multiple real-time tasks. In 7th International Workshop on Real-
Time Computing and Applications Symposium (RTCSA 2000), pages
12–14, Cheju Island,South Korea, Dec. 2000.

[15] H. Lee, H. Shin, and S. L. Min. Worst case timing requirement of
real-time tasks with time redundancy. In 6th International Workshop
on Real-Time Computing and Applications Symposium (RTCSA ’99),
pages 410–413, Hong Kong, China, Dec. 1999. IEEE Computer
Society.

[16] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent
checkpoint for parallel programs. SIGPLAN Not., 25(3):79–88,
1990.

[17] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent
checkpointing for parallel programs. IEEE Trans. Parallel Distrib.
Syst., 5(8):874–879, 1994.

[18] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under Unix. In Usenix Winter Technical Conference,
pages 213–223, January 1995.

[19] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE
Transactions on Parallel and Distributed Systems, 9(10):972–986,
October 1998.

[20] S. Punnekkat and A. Burns. Analysis of checkpointing for
schedulability of real-time systems. In 4th International Workshop on
Real-Time Computing Systems and Applications (RTCSA ’97), pages
198–205. IEEE Computer Society, Oct. 1997.

[21] A. Ranganathan and S. Upadhyaya. Simulation analysis of a dynamic
checkpointing strategy for real-time systems. In 27th Annual
Simulation Symposium, pages 181–187, La Jolla, CA, Apr. 1994.
IEEE Computer Society.

[22] A. B. S. Punnekkat and R. Davis. Analysis of checkpointing for
real-time systems. Real-Time Systems Journal, 20(1):83–102, Jan
2001.

[23] K. G. Shin, T.-H. Lin, and Y.-H. Lee. Optimal checkpointing of
real-time tasks. IEEE Trans. Comput., 36(11):1328–1341, 1987.

[24] J. M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for garbage
collection at every instruction in a Java compiler. In Proceedings
of the ACM SIGPLAN ’99 Conference on Programming Language
Design and Implementation, Atlanta, Georgia, May 1–4, 1999.

[25] A. N. Tantawi and M. Ruschitzka. Performance analysis of
checkpointing strategies. ACM Trans. Comput. Syst., 2(2):123–144,
1984.

[26] D. Ungar. Generation scavenging: A non-disruptive high perfor-
mance storage reclamation algorithm. In Software Development
Environments (SDE), pages 157–167, 1984.

[27] N. H. Vaidya. On checkpoint latency. Technical report, College
Station, TX, USA, 1995.

[28] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a
checkpointing scheme. IEEE Trans. Comput., 46(8):942–947, 1997.

[29] N. H. Vaidya. Staggered consistent checkpointing. IEEE Trans.
Parallel Distrib. Syst., 10(7):694–702, 1999.

[30] J. C. Wu and S. A. Brandt. Storage access support for soft real-time

76

applications. In 10th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2004), Toronto, Canada, May 2004.

[31] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing
in embedded real-time systems. In 2003 Design, Automation and Test
in Europe Conference and Exposition (DATE 2003), pages 10918–
10925, Munich, Germany, Mar. 2003. IEEE Computer Society.

[32] Y. Zhang and K. Chakrabarty. Fault recovery based on checkpointing

for hard real-time embedded systems. In 18th IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT
2003), pages 320–327, Boston, MA, Nov. 2003.

[33] Y. Zhang and K. Chakrabarty. Dynamic adaptation for fault tolerance
and power management in embedded real-time systems. Trans. on
Embedded Computing Sys., 3(2):336–360, 2004.

77

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

